L(s) = 1 | − 5-s − 2·9-s − 5·13-s + 25-s − 4·29-s + 8·37-s + 4·41-s + 2·45-s + 6·49-s + 16·53-s − 4·61-s + 5·65-s − 8·73-s − 5·81-s + 4·89-s − 16·97-s − 4·101-s + 4·109-s + 24·113-s + 10·117-s − 22·121-s − 125-s + 127-s + 131-s + 137-s + 139-s + 4·145-s + ⋯ |
L(s) = 1 | − 0.447·5-s − 2/3·9-s − 1.38·13-s + 1/5·25-s − 0.742·29-s + 1.31·37-s + 0.624·41-s + 0.298·45-s + 6/7·49-s + 2.19·53-s − 0.512·61-s + 0.620·65-s − 0.936·73-s − 5/9·81-s + 0.423·89-s − 1.62·97-s − 0.398·101-s + 0.383·109-s + 2.25·113-s + 0.924·117-s − 2·121-s − 0.0894·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.332·145-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 832000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 832000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.975399996317021761637177682752, −7.53765996729605541234671425132, −7.16800477830639816267957712402, −6.85189703976895145026688091300, −6.12054051706452994069531459906, −5.63743168093476106014695569988, −5.44221623781686212238876016268, −4.63747710335269148615823781490, −4.36855800878218907812451552614, −3.78472189027544575246841050514, −3.11356961994890955574924273646, −2.55912744475119478531056657642, −2.15021984628723773006933737670, −1.00628232339531988541145195448, 0,
1.00628232339531988541145195448, 2.15021984628723773006933737670, 2.55912744475119478531056657642, 3.11356961994890955574924273646, 3.78472189027544575246841050514, 4.36855800878218907812451552614, 4.63747710335269148615823781490, 5.44221623781686212238876016268, 5.63743168093476106014695569988, 6.12054051706452994069531459906, 6.85189703976895145026688091300, 7.16800477830639816267957712402, 7.53765996729605541234671425132, 7.975399996317021761637177682752