| L(s) = 1 | − 3-s + 9-s + 4·11-s + 4·23-s − 5·25-s − 27-s + 8·31-s − 4·33-s + 2·37-s − 16·47-s − 4·49-s − 2·53-s + 16·59-s − 4·69-s − 24·71-s + 5·75-s + 81-s + 4·89-s − 8·93-s + 14·97-s + 4·99-s − 20·103-s − 2·111-s − 10·113-s + 5·121-s + 127-s + 131-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 1/3·9-s + 1.20·11-s + 0.834·23-s − 25-s − 0.192·27-s + 1.43·31-s − 0.696·33-s + 0.328·37-s − 2.33·47-s − 4/7·49-s − 0.274·53-s + 2.08·59-s − 0.481·69-s − 2.84·71-s + 0.577·75-s + 1/9·81-s + 0.423·89-s − 0.829·93-s + 1.42·97-s + 0.402·99-s − 1.97·103-s − 0.189·111-s − 0.940·113-s + 5/11·121-s + 0.0887·127-s + 0.0873·131-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5227200 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5227200 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−6.92318812947709829857199933577, −6.59060614834756228025102481824, −6.41176650308245350999104202909, −5.95789367429028619689585123868, −5.43620010668972877659421102935, −5.09288483700304703580687720384, −4.53661157539686235655561042088, −4.26483165984210633367059547512, −3.77279415780071677436228264553, −3.23066597332443980701345432846, −2.80106838852475612540391021742, −2.05819683239581432452136057540, −1.45896191837315043467382601463, −0.991408300446891656385657480292, 0,
0.991408300446891656385657480292, 1.45896191837315043467382601463, 2.05819683239581432452136057540, 2.80106838852475612540391021742, 3.23066597332443980701345432846, 3.77279415780071677436228264553, 4.26483165984210633367059547512, 4.53661157539686235655561042088, 5.09288483700304703580687720384, 5.43620010668972877659421102935, 5.95789367429028619689585123868, 6.41176650308245350999104202909, 6.59060614834756228025102481824, 6.92318812947709829857199933577