Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 18 x + 97 x^{2} )( 1 + 4 x + 97 x^{2} )$ |
| $1 - 14 x + 122 x^{2} - 1358 x^{3} + 9409 x^{4}$ | |
| Frobenius angles: | $\pm0.133124938748$, $\pm0.565091650464$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $196$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $8160$ | $88976640$ | $831428413920$ | $7836464528179200$ | $73744562184031672800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $9458$ | $910980$ | $88518334$ | $8587590564$ | $832974092786$ | $80798284242228$ | $7837433779281406$ | $760231061752184820$ | $73742412690336188018$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 196 curves (of which all are hyperelliptic):
- $y^2=86 x^6+61 x^5+53 x^4+35 x^3+x^2+49 x+48$
- $y^2=25 x^6+42 x^5+22 x^4+9 x^3+70 x^2+60 x+80$
- $y^2=22 x^6+20 x^5+68 x^4+15 x^3+58 x^2+80 x+18$
- $y^2=51 x^6+42 x^5+22 x^4+62 x^3+11 x^2+59 x+67$
- $y^2=84 x^6+67 x^5+22 x^4+94 x^3+82 x^2+69 x+47$
- $y^2=30 x^6+69 x^5+50 x^4+22 x^3+8 x^2+71 x+39$
- $y^2=54 x^6+14 x^5+38 x^4+87 x^3+18 x^2+86 x+84$
- $y^2=91 x^6+44 x^5+25 x^4+45 x^3+25 x^2+62 x+58$
- $y^2=75 x^6+84 x^5+16 x^4+45 x^3+16 x^2+24 x+46$
- $y^2=65 x^6+69 x^5+72 x^4+62 x^3+15 x^2+52 x+46$
- $y^2=75 x^6+26 x^5+43 x^4+69 x^3+8 x^2+51 x+18$
- $y^2=68 x^6+54 x^5+5 x^4+35 x^3+26 x^2+84 x+33$
- $y^2=7 x^6+67 x^5+16 x^4+57 x^3+30 x^2+74 x+33$
- $y^2=55 x^6+65 x^5+36 x^4+14 x^3+55 x^2+56 x+42$
- $y^2=26 x^6+45 x^5+11 x^4+96 x^3+11 x^2+45 x+26$
- $y^2=39 x^6+87 x^5+8 x^4+12 x^3+43 x^2+7 x+33$
- $y^2=19 x^6+29 x^5+10 x^4+33 x^3+32 x^2+61 x+19$
- $y^2=70 x^6+17 x^5+60 x^4+42 x^3+69 x^2+14 x+21$
- $y^2=42 x^6+90 x^5+81 x^4+39 x^3+61 x^2+73 x+51$
- $y^2=46 x^6+30 x^5+46 x^4+11 x^3+57 x^2+60 x+49$
- and 176 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The isogeny class factors as 1.97.as $\times$ 1.97.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.