Properties

Label 2.23.ae_bu
Base field $\F_{23}$
Dimension $2$
$p$-rank $1$
Ordinary no
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $2$
L-polynomial:  $( 1 - 4 x + 23 x^{2} )( 1 + 23 x^{2} )$
  $1 - 4 x + 46 x^{2} - 92 x^{3} + 529 x^{4}$
Frobenius angles:  $\pm0.363071407864$, $\pm0.5$
Angle rank:  $1$ (numerical)
Jacobians:  $54$

This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $1$
Slopes:  $[0, 1/2, 1/2, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $480$ $322560$ $150639840$ $78059520000$ $41399208242400$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $20$ $606$ $12380$ $278942$ $6432100$ $148039614$ $3404840620$ $78310960318$ $1801154451380$ $41426518947486$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23^{2}}$.

Endomorphism algebra over $\F_{23}$
The isogeny class factors as 1.23.ae $\times$ 1.23.a and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{23}$
The base change of $A$ to $\F_{23^{2}}$ is 1.529.be $\times$ 1.529.bu. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.23.e_bu$2$(not in LMFDB)