sage:H = DirichletGroup(5227200)
chi = H[1]
pari:[g,chi] = znchar(Mod(1,5227200))
| Modulus: | \(5227200\) | |
| Conductor: | \(1\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | yes |
| Primitive: | no, induced from \(\chi_{1}(0,\cdot)\) |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
|
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\((4737151,980101,3678401,418177,3499201)\) → \((1,1,1,1,1)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 5227200 }(1, a) \) |
\(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)