Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 4 x + 37 x^{2} )( 1 + 2 x + 37 x^{2} )$ |
| $1 - 2 x + 66 x^{2} - 74 x^{3} + 1369 x^{4}$ | |
| Frobenius angles: | $\pm0.393356479550$, $\pm0.552568456711$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $124$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1360$ | $2056320$ | $2574154960$ | $3507259392000$ | $4808284603742800$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $1498$ | $50820$ | $1871374$ | $69339636$ | $2565738826$ | $94931753652$ | $3512481884446$ | $129961759641540$ | $4808584225561018$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 124 curves (of which all are hyperelliptic):
- $y^2=13 x^6+2 x^5+17 x^4+12 x^3+32 x^2+14 x+32$
- $y^2=33 x^6+23 x^5+17 x^4+26 x^3+32 x^2+7$
- $y^2=11 x^6+30 x^5+2 x^4+13 x^3+7 x^2+16 x+15$
- $y^2=24 x^6+25 x^5+26 x^4+2 x^3+11 x^2+34$
- $y^2=x^6+23 x^5+19 x^4+5 x^3+9 x^2+24 x+30$
- $y^2=23 x^6+3 x^5+36 x^4+11 x^3+36 x^2+3 x+23$
- $y^2=4 x^6+5 x^5+3 x^4+6 x^3+3 x^2+5 x+4$
- $y^2=17 x^6+23 x^5+25 x^4+3 x^3+25 x^2+23 x+17$
- $y^2=13 x^6+26 x^5+22 x^4+29 x^3+35 x^2+31 x+22$
- $y^2=14 x^6+19 x^5+31 x^4+5 x^3+24 x^2+8 x+29$
- $y^2=36 x^5+4 x^4+24 x^3+30 x^2+6 x+5$
- $y^2=3 x^6+x^5+25 x^4+30 x^3+14 x^2+30 x+11$
- $y^2=21 x^6+17 x^5+32 x^4+10 x^3+31 x^2+23 x+28$
- $y^2=27 x^6+2 x^5+35 x^4+4 x^3+35 x^2+2 x+27$
- $y^2=29 x^6+x^5+28 x^4+2 x^3+22 x^2+18 x+23$
- $y^2=6 x^6+17 x^5+25 x^4+26 x^3+25 x^2+17 x+6$
- $y^2=2 x^6+11 x^5+22 x^4+9 x^3+5 x^2+19$
- $y^2=25 x^6+17 x^5+7 x^3+17 x+25$
- $y^2=26 x^6+10 x^5+16 x^4+20 x^3+22 x+12$
- $y^2=27 x^6+22 x^5+6 x^4+33 x^3+6 x^2+22 x+27$
- and 104 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The isogeny class factors as 1.37.ae $\times$ 1.37.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.