Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 4 x^{2} + 1849 x^{4}$ |
| Frobenius angles: | $\pm0.242594772875$, $\pm0.757405227125$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{10}, \sqrt{-82})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $60$ |
| Isomorphism classes: | 160 |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1846$ | $3407716$ | $6321385174$ | $11713396730256$ | $21611482245498886$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $44$ | $1842$ | $79508$ | $3426166$ | $147008444$ | $6321407298$ | $271818611108$ | $11688186838558$ | $502592611936844$ | $21611482177713522$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=3 x^6+15 x^5+8 x^4+3 x^3+19 x^2+7 x+33$
- $y^2=9 x^6+2 x^5+24 x^4+9 x^3+14 x^2+21 x+13$
- $y^2=15 x^5+34 x^4+23 x^3+22 x^2+25 x+40$
- $y^2=2 x^5+16 x^4+26 x^3+23 x^2+32 x+34$
- $y^2=16 x^6+16 x^5+13 x^4+17 x^3+13 x^2+21 x+37$
- $y^2=5 x^6+5 x^5+39 x^4+8 x^3+39 x^2+20 x+25$
- $y^2=2 x^6+10 x^5+4 x^4+16 x^3+20 x^2+38 x+25$
- $y^2=6 x^6+30 x^5+12 x^4+5 x^3+17 x^2+28 x+32$
- $y^2=12 x^6+4 x^5+36 x^4+32 x^3+40 x^2+42 x+30$
- $y^2=36 x^6+12 x^5+22 x^4+10 x^3+34 x^2+40 x+4$
- $y^2=17 x^6+25 x^5+30 x^4+27 x^3+25 x^2+39 x+39$
- $y^2=8 x^6+32 x^5+4 x^4+38 x^3+32 x^2+31 x+31$
- $y^2=21 x^6+20 x^5+25 x^4+7 x^3+42 x^2+15 x+33$
- $y^2=20 x^6+17 x^5+32 x^4+21 x^3+40 x^2+2 x+13$
- $y^2=19 x^6+10 x^5+6 x^4+19 x^3+12 x^2+33 x+40$
- $y^2=14 x^6+30 x^5+18 x^4+14 x^3+36 x^2+13 x+34$
- $y^2=20 x^6+27 x^5+31 x^4+x^3+23 x^2+10 x+39$
- $y^2=17 x^6+38 x^5+7 x^4+3 x^3+26 x^2+30 x+31$
- $y^2=39 x^6+5 x^5+5 x^4+12 x^3+x^2+9 x+27$
- $y^2=31 x^6+15 x^5+15 x^4+36 x^3+3 x^2+27 x+38$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{10}, \sqrt{-82})\). |
| The base change of $A$ to $\F_{43^{2}}$ is 1.1849.ae 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-205}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.a_e | $4$ | (not in LMFDB) |