L(s) = 1 | − 4·3-s + 4-s + 2·5-s + 6·9-s − 6·11-s − 4·12-s − 8·15-s + 16-s + 2·20-s + 12·23-s + 3·25-s + 4·27-s + 4·31-s + 24·33-s + 6·36-s + 4·37-s − 6·44-s + 12·45-s − 24·47-s − 4·48-s + 2·49-s + 12·53-s − 12·55-s + 12·59-s − 8·60-s + 64-s − 8·67-s + ⋯ |
L(s) = 1 | − 2.30·3-s + 1/2·4-s + 0.894·5-s + 2·9-s − 1.80·11-s − 1.15·12-s − 2.06·15-s + 1/4·16-s + 0.447·20-s + 2.50·23-s + 3/5·25-s + 0.769·27-s + 0.718·31-s + 4.17·33-s + 36-s + 0.657·37-s − 0.904·44-s + 1.78·45-s − 3.50·47-s − 0.577·48-s + 2/7·49-s + 1.64·53-s − 1.61·55-s + 1.56·59-s − 1.03·60-s + 1/8·64-s − 0.977·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2044900 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2044900 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.13284046687725717765533260434, −7.01938464652870881402898826049, −6.55827234630368931511436644185, −6.21865412034335443989351794245, −5.70337012148360379248131749579, −5.38356125373378726827971266003, −5.20912025979554566633790456489, −4.79474315687223740281257481843, −4.37051942916216409512438466875, −3.22135578238067272752399472859, −2.83582044678427759968275472285, −2.48318029352373914558980684814, −1.46367458730915917590656952546, −0.870890047860011749751230498814, 0,
0.870890047860011749751230498814, 1.46367458730915917590656952546, 2.48318029352373914558980684814, 2.83582044678427759968275472285, 3.22135578238067272752399472859, 4.37051942916216409512438466875, 4.79474315687223740281257481843, 5.20912025979554566633790456489, 5.38356125373378726827971266003, 5.70337012148360379248131749579, 6.21865412034335443989351794245, 6.55827234630368931511436644185, 7.01938464652870881402898826049, 7.13284046687725717765533260434