Related objects

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:H = DirichletGroup(2044900) chi = H[1]
 
Copy content pari:[g,chi] = znchar(Mod(1,2044900))
 

Basic properties

Modulus: \(2044900\)
Conductor: \(1\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{1}(0,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q\)

Values on generators

\((1022451,490777,50701,992201)\) → \((1,1,1,1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(17\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 2044900 }(1, a) \) \(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2044900 }(1,a) \;\) at \(\;a = \) e.g. 2