sage:H = DirichletGroup(2044900)
chi = H[1]
pari:[g,chi] = znchar(Mod(1,2044900))
Modulus: | \(2044900\) | |
Conductor: | \(1\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(1\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | yes |
Primitive: | no, induced from \(\chi_{1}(0,\cdot)\) |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
|
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\((1022451,490777,50701,992201)\) → \((1,1,1,1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 2044900 }(1, a) \) |
\(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)