Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 43 x^{2} )( 1 + 2 x + 43 x^{2} )$ |
$1 + 82 x^{2} + 1849 x^{4}$ | |
Frobenius angles: | $\pm0.451268054243$, $\pm0.548731945757$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1932$ | $3732624$ | $6321459564$ | $11667525682176$ | $21611482324993932$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $44$ | $2014$ | $79508$ | $3412750$ | $147008444$ | $6321556078$ | $271818611108$ | $11688195639454$ | $502592611936844$ | $21611482336703614$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=39 x^5+14 x^4+25 x^3+3 x^2+23 x+24$
- $y^2=31 x^5+42 x^4+32 x^3+9 x^2+26 x+29$
- $y^2=25 x^6+41 x^5+2 x^4+31 x^3+10 x^2+16 x+5$
- $y^2=32 x^6+37 x^5+6 x^4+7 x^3+30 x^2+5 x+15$
- $y^2=21 x^6+15 x^5+31 x^4+39 x^3+24 x^2+15 x+33$
- $y^2=20 x^6+2 x^5+7 x^4+31 x^3+29 x^2+2 x+13$
- $y^2=3 x^6+38 x^5+30 x^4+31 x^3+30 x^2+38 x+3$
- $y^2=9 x^6+28 x^5+4 x^4+7 x^3+4 x^2+28 x+9$
- $y^2=x^6+24 x^5+7 x^4+28 x^3+32 x^2+11 x+41$
- $y^2=3 x^6+29 x^5+21 x^4+41 x^3+10 x^2+33 x+37$
- $y^2=42 x^6+40 x^5+39 x^3+2 x^2+25 x+19$
- $y^2=40 x^6+34 x^5+31 x^3+6 x^2+32 x+14$
- $y^2=29 x^6+10 x^5+41 x^4+37 x^3+41 x^2+10 x+29$
- $y^2=x^6+30 x^5+37 x^4+25 x^3+37 x^2+30 x+1$
- $y^2=28 x^6+23 x^5+27 x^4+32 x^3+27 x^2+23 x+28$
- $y^2=41 x^6+26 x^5+38 x^4+10 x^3+38 x^2+26 x+41$
- $y^2=35 x^6+34 x^5+32 x^4+19 x^3+25 x^2+42 x+22$
- $y^2=34 x^6+30 x^4+4 x^2+15$
- $y^2=11 x^6+31 x^4+7 x^2+39$
- $y^2=32 x^6+14 x^5+23 x^4+10 x^3+41 x^2+x+42$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{2}}$.
Endomorphism algebra over $\F_{43}$The isogeny class factors as 1.43.ac $\times$ 1.43.c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{43^{2}}$ is 1.1849.de 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
Base change
This is a primitive isogeny class.