| L(s) = 1 | − 5-s + 3·7-s + 2·13-s + 8·17-s − 6·19-s − 10·23-s + 2·25-s − 3·29-s − 5·31-s − 3·35-s − 8·37-s − 10·41-s − 6·43-s + 4·49-s − 17·53-s − 13·59-s + 6·61-s − 2·65-s + 16·67-s − 4·71-s − 31·73-s − 3·79-s − 83-s − 8·85-s − 18·89-s + 6·91-s + 6·95-s + ⋯ |
| L(s) = 1 | − 0.447·5-s + 1.13·7-s + 0.554·13-s + 1.94·17-s − 1.37·19-s − 2.08·23-s + 2/5·25-s − 0.557·29-s − 0.898·31-s − 0.507·35-s − 1.31·37-s − 1.56·41-s − 0.914·43-s + 4/7·49-s − 2.33·53-s − 1.69·59-s + 0.768·61-s − 0.248·65-s + 1.95·67-s − 0.474·71-s − 3.62·73-s − 0.337·79-s − 0.109·83-s − 0.867·85-s − 1.90·89-s + 0.628·91-s + 0.615·95-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 75898944 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75898944 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.52152593906657226008472952629, −7.34881631709467685801561008755, −7.11071423775719357510892753740, −6.47773389260812938675478089267, −6.11675198465515062993883087977, −5.95494045571082517165736945930, −5.51935833455287810241479784035, −5.15970776009231410685971735581, −4.76845417582265173654526485958, −4.44205837738084222201093846943, −4.10944145008219791144126591136, −3.57915648653786288194661003015, −3.24195397957570094323919775718, −3.20653773276818271837345545781, −2.12687786634245625724516686065, −1.97992979692738288465172704779, −1.51975917180180027586109261330, −1.19622492791519151853856930398, 0, 0,
1.19622492791519151853856930398, 1.51975917180180027586109261330, 1.97992979692738288465172704779, 2.12687786634245625724516686065, 3.20653773276818271837345545781, 3.24195397957570094323919775718, 3.57915648653786288194661003015, 4.10944145008219791144126591136, 4.44205837738084222201093846943, 4.76845417582265173654526485958, 5.15970776009231410685971735581, 5.51935833455287810241479784035, 5.95494045571082517165736945930, 6.11675198465515062993883087977, 6.47773389260812938675478089267, 7.11071423775719357510892753740, 7.34881631709467685801561008755, 7.52152593906657226008472952629