Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 42 x^{2} + 114 x^{3} + 361 x^{4}$ |
Frobenius angles: | $\pm0.527929002903$, $\pm0.705078805560$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.91600.1 |
Galois group: | $D_{4}$ |
Jacobians: | $18$ |
Isomorphism classes: | 24 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $524$ | $148816$ | $45707996$ | $16974548224$ | $6133759919324$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $26$ | $410$ | $6662$ | $130254$ | $2477186$ | $47047466$ | $893895854$ | $16983252574$ | $322687975178$ | $6131074312250$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=6 x^6+17 x^5+10 x^4+9 x^3+3 x^2+5 x+13$
- $y^2=5 x^6+17 x^5+8 x^4+5 x^3+3 x^2+11 x+4$
- $y^2=14 x^6+15 x^5+9 x^4+3 x^3+17 x^2+18 x+16$
- $y^2=12 x^6+x^5+15 x^4+5 x^3+x+7$
- $y^2=4 x^6+6 x^5+16 x^4+5 x^2+x+6$
- $y^2=9 x^6+9 x^5+2 x^4+16 x^3+17 x^2+10 x+11$
- $y^2=4 x^6+16 x^5+2 x^4+10 x^3+18 x^2+4 x+6$
- $y^2=11 x^6+13 x^5+18 x^4+10 x^3+9 x^2+17 x+2$
- $y^2=15 x^6+2 x^5+2 x^4+5 x^3+15 x^2+16 x+7$
- $y^2=11 x^6+6 x^5+x^4+10 x^3+10 x^2+18 x+17$
- $y^2=7 x^6+14 x^4+17 x^3+5 x^2+15 x+8$
- $y^2=16 x^6+13 x^5+14 x^4+5 x^3+12 x^2+14 x+11$
- $y^2=7 x^6+15 x^5+12 x^4+4 x^3+2 x^2+12 x+6$
- $y^2=7 x^6+5 x^5+16 x^4+17 x^3+13 x^2+7 x+16$
- $y^2=x^6+11 x^5+8 x^4+17 x^3+8 x^2+17 x+9$
- $y^2=9 x^6+5 x^5+12 x^4+14 x^3+13 x^2+17 x+7$
- $y^2=7 x^6+15 x^5+9 x^4+8 x^3+16 x^2+x+8$
- $y^2=17 x^6+9 x^3+18 x^2+8 x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is 4.0.91600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.19.ag_bq | $2$ | (not in LMFDB) |