Invariants
| Base field: | $\F_{79}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 3 x + 159 x^{2} + 237 x^{3} + 6241 x^{4}$ |
| Frobenius angles: | $\pm0.506840135899$, $\pm0.547050527077$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2441125.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $32$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6641$ | $40915201$ | $242746819391$ | $1516220993761645$ | $9468542648911869296$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $83$ | $6551$ | $492347$ | $38927283$ | $3077143028$ | $243089056451$ | $19203900137897$ | $1517108703661363$ | $119851596788162213$ | $9468276089208842606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=61 x^6+4 x^5+63 x^4+48 x^3+74 x^2+20 x+24$
- $y^2=12 x^6+71 x^5+52 x^4+31 x^3+32 x^2+30 x+30$
- $y^2=15 x^6+39 x^5+65 x^4+57 x^3+57 x^2+40 x+24$
- $y^2=4 x^6+26 x^5+60 x^4+70 x^3+77 x^2+64 x+50$
- $y^2=72 x^6+30 x^5+37 x^3+13 x^2+78 x+75$
- $y^2=25 x^6+39 x^5+62 x^4+12 x^3+6 x^2+45 x+13$
- $y^2=17 x^5+14 x^4+74 x^3+74 x^2+15 x+12$
- $y^2=30 x^6+23 x^5+67 x^4+x^3+24 x^2+57 x+78$
- $y^2=10 x^6+56 x^5+64 x^4+5 x^3+76 x^2+11 x+69$
- $y^2=77 x^6+24 x^5+12 x^4+44 x^3+24 x^2+52 x+20$
- $y^2=35 x^6+6 x^5+65 x^3+73 x^2+28 x+39$
- $y^2=5 x^6+63 x^5+15 x^4+74 x^3+55 x^2+32 x+59$
- $y^2=65 x^6+68 x^5+6 x^4+8 x^3+30 x^2+50 x+40$
- $y^2=59 x^6+12 x^5+23 x^4+24 x^3+71 x^2+56 x+12$
- $y^2=50 x^6+52 x^5+17 x^4+66 x^3+32 x^2+10 x+75$
- $y^2=3 x^6+15 x^5+16 x^4+10 x^3+71 x^2+67 x$
- $y^2=32 x^6+15 x^5+44 x^4+61 x^3+47 x^2+57 x+8$
- $y^2=16 x^6+70 x^5+56 x^4+59 x^3+16 x^2+48 x+71$
- $y^2=32 x^6+43 x^5+28 x^4+17 x^3+25 x^2+39 x+20$
- $y^2=39 x^6+39 x^5+73 x^4+74 x^3+70 x^2+66 x+61$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$| The endomorphism algebra of this simple isogeny class is 4.0.2441125.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.79.ad_gd | $2$ | (not in LMFDB) |