Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 13 x + 159 x^{2} + 767 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.613932648544$, $\pm0.665158734200$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.921125.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $14$ |
| Isomorphism classes: | 14 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4421$ | $12648481$ | $41831904311$ | $146859552376445$ | $511173970144978096$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $73$ | $3631$ | $203677$ | $12119763$ | $715004328$ | $42179899051$ | $2488651096627$ | $146830473811443$ | $8662995617838883$ | $511116752661073206$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=12 x^6+51 x^5+5 x^4+15 x^3+27 x^2+20 x+7$
- $y^2=x^6+22 x^5+16 x^4+58 x^3+43 x^2+28 x+8$
- $y^2=43 x^6+54 x^5+9 x^4+21 x^3+16 x^2+25 x+26$
- $y^2=29 x^6+42 x^5+13 x^4+10 x^3+30 x^2+22 x+49$
- $y^2=50 x^6+36 x^5+46 x^4+58 x^3+28 x^2+21 x+48$
- $y^2=20 x^6+52 x^5+29 x^4+33 x^3+29 x^2+5 x+11$
- $y^2=57 x^6+28 x^5+19 x^4+32 x^3+8 x^2+46 x+31$
- $y^2=57 x^6+52 x^5+19 x^4+7 x^3+47 x^2+18 x+25$
- $y^2=12 x^6+5 x^5+12 x^4+49 x^3+12 x^2+3 x+46$
- $y^2=23 x^6+19 x^5+26 x^4+7 x^3+13 x^2+42 x+48$
- $y^2=36 x^6+55 x^5+28 x^4+21 x^3+21 x^2+41 x+37$
- $y^2=18 x^6+14 x^5+55 x^4+8 x^3+16 x^2+10 x+25$
- $y^2=53 x^6+49 x^5+30 x^4+47 x^3+21 x^2+2 x+3$
- $y^2=25 x^6+14 x^5+54 x^4+20 x^3+20 x^2+47 x+57$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.921125.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.an_gd | $2$ | (not in LMFDB) |