Invariants
| Base field: | $\F_{71}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 4 x + 66 x^{2} + 284 x^{3} + 5041 x^{4}$ |
| Frobenius angles: | $\pm0.364807057669$, $\pm0.724989539171$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.8000.2 |
| Galois group: | $C_4$ |
| Jacobians: | $390$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5396$ | $26008720$ | $128144213396$ | $646029971870720$ | $3255054480948668116$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $76$ | $5158$ | $358036$ | $25422558$ | $1804124556$ | $128099365318$ | $9095127035476$ | $645753539301438$ | $45848501021498956$ | $3255243551943597798$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 390 curves (of which all are hyperelliptic):
- $y^2=9 x^6+50 x^5+15 x^4+51 x^3+28 x^2+16 x+47$
- $y^2=20 x^6+25 x^5+52 x^4+53 x^3+19 x^2+28 x+53$
- $y^2=33 x^6+16 x^5+53 x^4+55 x^3+49 x^2+6 x+30$
- $y^2=31 x^6+47 x^5+24 x^4+56 x^3+27 x^2+8 x+34$
- $y^2=63 x^6+10 x^5+61 x^4+46 x^3+11 x^2+67 x+22$
- $y^2=67 x^6+30 x^5+68 x^4+43 x^3+6 x^2+20 x+55$
- $y^2=54 x^6+20 x^5+10 x^4+42 x^3+12 x^2+61 x+10$
- $y^2=51 x^6+60 x^5+35 x^4+34 x^2+41 x+69$
- $y^2=x^6+8 x^5+69 x^4+51 x^3+48 x^2+68 x+44$
- $y^2=48 x^6+60 x^5+18 x^4+49 x^3+68 x^2+23 x+60$
- $y^2=8 x^6+23 x^5+57 x^4+16 x^3+39 x^2+52 x+21$
- $y^2=63 x^6+26 x^5+44 x^4+51 x^3+25 x^2+23 x+43$
- $y^2=31 x^6+38 x^5+26 x^4+13 x^3+62 x^2+54 x+25$
- $y^2=4 x^6+61 x^5+8 x^4+64 x^3+2 x^2+32 x+19$
- $y^2=38 x^6+36 x^5+52 x^4+42 x^3+39 x^2+43 x+17$
- $y^2=23 x^6+23 x^5+66 x^4+29 x^3+45 x^2+27 x+62$
- $y^2=63 x^6+16 x^5+34 x^4+43 x^3+40 x^2+10 x+29$
- $y^2=40 x^6+40 x^5+19 x^4+4 x^3+61 x^2+54 x+14$
- $y^2=x^6+12 x^5+30 x^4+18 x^3+58 x^2+9 x+67$
- $y^2=17 x^6+46 x^5+68 x^4+28 x^3+8 x^2+3 x$
- and 370 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$| The endomorphism algebra of this simple isogeny class is 4.0.8000.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.71.ae_co | $2$ | (not in LMFDB) |