Properties

Label 2.71.e_co
Base field $\F_{71}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 + 4 x + 66 x^{2} + 284 x^{3} + 5041 x^{4}$
Frobenius angles:  $\pm0.364807057669$, $\pm0.724989539171$
Angle rank:  $2$ (numerical)
Number field:  4.0.8000.2
Galois group:  $C_4$
Jacobians:  $390$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5396$ $26008720$ $128144213396$ $646029971870720$ $3255054480948668116$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $76$ $5158$ $358036$ $25422558$ $1804124556$ $128099365318$ $9095127035476$ $645753539301438$ $45848501021498956$ $3255243551943597798$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 390 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is 4.0.8000.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.ae_co$2$(not in LMFDB)