Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 17 x + 167 x^{2} + 901 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.614981926117$, $\pm0.802792878183$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.331525.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $48$ |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3895$ | $8019805$ | $22030669195$ | $62289063553525$ | $174887014580098000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $71$ | $2855$ | $147977$ | $7894203$ | $418194406$ | $22164443615$ | $1174709097577$ | $62259701882803$ | $3299763666582431$ | $174887468786894150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=14 x^6+3 x^5+31 x^4+45 x^3+13 x^2+43 x+34$
- $y^2=38 x^6+15 x^5+12 x^4+33 x^3+21 x^2+9 x+5$
- $y^2=10 x^6+10 x^5+39 x^4+18 x^3+7 x^2+5 x+15$
- $y^2=5 x^6+30 x^5+x^4+41 x^3+17 x^2+4 x+38$
- $y^2=14 x^6+27 x^5+29 x^4+40 x^3+25 x^2+13 x+26$
- $y^2=52 x^6+13 x^5+24 x^4+26 x^3+47 x^2+40 x$
- $y^2=49 x^6+47 x^5+15 x^4+x^3+8 x^2+29 x+4$
- $y^2=17 x^6+48 x^5+25 x^4+4 x^3+46 x^2+35 x+28$
- $y^2=27 x^6+13 x^5+49 x^4+34 x^3+3 x^2+34 x+19$
- $y^2=22 x^6+19 x^5+32 x^4+41 x^3+14 x^2+12 x+33$
- $y^2=51 x^6+9 x^5+36 x^4+38 x^3+40 x^2+3 x+29$
- $y^2=2 x^6+24 x^5+51 x^4+19 x^3+16 x^2+26 x+10$
- $y^2=42 x^6+16 x^5+48 x^4+26 x^3+12 x^2+11 x+40$
- $y^2=15 x^6+34 x^5+37 x^4+3 x^3+28 x^2+24 x+12$
- $y^2=6 x^6+43 x^5+29 x^4+38 x^3+30 x^2+26 x+13$
- $y^2=38 x^6+19 x^5+21 x^4+37 x^3+39 x^2+41 x+41$
- $y^2=17 x^6+25 x^5+36 x^3+52 x^2+9 x+7$
- $y^2=12 x^6+51 x^5+7 x^4+14 x^3+31 x^2+4 x+29$
- $y^2=5 x^6+16 x^5+33 x^4+46 x^3+25 x^2+37 x+7$
- $y^2=17 x^6+7 x^5+3 x^4+46 x^3+25 x^2+47 x+2$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.331525.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.ar_gl | $2$ | (not in LMFDB) |