Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 10 x + 102 x^{2} + 410 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.569244667553$, $\pm0.691140035741$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.436400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $54$ |
Isomorphism classes: | 72 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2204$ | $3006256$ | $4693199804$ | $7985818438400$ | $13425214228049404$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $52$ | $1786$ | $68092$ | $2826078$ | $115878252$ | $4750016986$ | $194754163012$ | $7984925666238$ | $327381940040452$ | $13422659401235706$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 54 curves (of which all are hyperelliptic):
- $y^2=24 x^6+2 x^5+6 x^4+8 x^3+24 x^2+32 x+32$
- $y^2=x^6+32 x^5+39 x^4+4 x^3+32 x^2+40 x+37$
- $y^2=5 x^5+23 x^4+30 x^3+5 x^2+x+40$
- $y^2=22 x^6+33 x^5+22 x^4+10 x^3+40 x^2+29 x+33$
- $y^2=3 x^6+21 x^5+36 x^4+9 x^3+15 x^2+34 x+1$
- $y^2=8 x^6+11 x^5+3 x^4+3 x^3+36 x^2+4 x+16$
- $y^2=18 x^6+x^5+24 x^3+8 x^2+27 x+35$
- $y^2=40 x^6+34 x^5+35 x^4+30 x^3+15 x^2+13 x+7$
- $y^2=25 x^6+27 x^5+20 x^4+26 x^3+9 x^2+23 x+24$
- $y^2=18 x^6+22 x^5+2 x^4+35 x^3+10 x^2+29 x+40$
- $y^2=37 x^6+19 x^5+10 x^4+22 x^3+31 x^2+10 x+17$
- $y^2=25 x^6+17 x^5+30 x^4+29 x^2+14 x+25$
- $y^2=22 x^6+28 x^5+2 x^4+30 x^3+25 x^2+4 x+22$
- $y^2=21 x^6+30 x^5+8 x^4+28 x^3+30 x^2+7 x+19$
- $y^2=14 x^5+31 x^4+35 x^3+30 x^2+31$
- $y^2=23 x^6+x^5+x^4+37 x^3+26 x^2+23 x+20$
- $y^2=36 x^6+22 x^5+12 x^4+28 x^3+10 x^2+6 x+26$
- $y^2=2 x^6+32 x^5+14 x^4+37 x^3+37 x^2+39 x+24$
- $y^2=7 x^6+x^5+14 x^4+27 x^3+40 x^2+17 x+34$
- $y^2=21 x^6+22 x^5+31 x^4+33 x^3+23 x^2+22 x+32$
- and 34 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.436400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.ak_dy | $2$ | (not in LMFDB) |