Invariants
| Base field: | $\F_{61}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 6 x + 6 x^{2} - 366 x^{3} + 3721 x^{4}$ |
| Frobenius angles: | $\pm0.137758228532$, $\pm0.675445951246$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.7600.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $222$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3356$ | $13759600$ | $51247331516$ | $191784827257600$ | $713388821249860316$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $56$ | $3698$ | $225776$ | $13851438$ | $844650656$ | $51520314818$ | $3142748688296$ | $191707347539038$ | $11694146040926696$ | $713342913507682898$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 222 curves (of which all are hyperelliptic):
- $y^2=35 x^6+5 x^5+41 x^4+15 x^3+14 x^2+35 x+26$
- $y^2=14 x^6+29 x^5+26 x^4+52 x^3+53 x^2+20 x+47$
- $y^2=7 x^6+17 x^5+24 x^4+39 x^3+50 x^2+14 x+59$
- $y^2=2 x^6+21 x^4+36 x^3+35 x^2+60 x+31$
- $y^2=50 x^6+39 x^5+38 x^4+44 x^3+34 x^2+32 x+7$
- $y^2=42 x^6+48 x^5+37 x^4+10 x^3+5 x^2+58$
- $y^2=47 x^6+30 x^5+2 x^4+13 x^3+42 x^2+10 x+31$
- $y^2=31 x^6+50 x^5+25 x^4+55 x^3+50 x^2+32 x+1$
- $y^2=54 x^6+57 x^5+40 x^4+37 x^3+42 x^2+37 x+39$
- $y^2=43 x^6+46 x^5+16 x^4+12 x^3+49 x^2+27 x+13$
- $y^2=9 x^6+57 x^5+47 x^4+34 x^3+58 x^2+41 x+8$
- $y^2=48 x^6+x^5+25 x^4+8 x^3+3 x^2+36 x+23$
- $y^2=12 x^6+51 x^5+18 x^4+48 x^3+57 x^2+58 x+55$
- $y^2=31 x^6+55 x^5+44 x^4+29 x^3+18 x^2+35 x+27$
- $y^2=31 x^6+9 x^5+20 x^4+38 x^3+50 x^2+21 x+59$
- $y^2=13 x^6+9 x^5+28 x^4+19 x^3+48 x^2+42 x+50$
- $y^2=4 x^6+41 x^5+46 x^4+16 x^3+24 x+35$
- $y^2=56 x^6+15 x^5+14 x^4+x^3+5 x^2+9 x+29$
- $y^2=x^6+18 x^5+36 x^4+36 x^3+54 x^2+56 x+31$
- $y^2=x^6+60 x^5+30 x^4+21 x^3+22 x^2+54 x+6$
- and 202 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$| The endomorphism algebra of this simple isogeny class is 4.0.7600.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.61.g_g | $2$ | (not in LMFDB) |