| L(s) = 1 | − 2-s + 4-s − 5-s − 8-s − 2·9-s + 10-s + 3·13-s + 16-s − 6·17-s + 2·18-s − 20-s − 4·25-s − 3·26-s − 32-s + 6·34-s − 2·36-s − 2·37-s + 40-s + 7·41-s + 2·45-s − 4·49-s + 4·50-s + 3·52-s − 6·53-s − 8·61-s + 64-s − 3·65-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s − 2/3·9-s + 0.316·10-s + 0.832·13-s + 1/4·16-s − 1.45·17-s + 0.471·18-s − 0.223·20-s − 4/5·25-s − 0.588·26-s − 0.176·32-s + 1.02·34-s − 1/3·36-s − 0.328·37-s + 0.158·40-s + 1.09·41-s + 0.298·45-s − 4/7·49-s + 0.565·50-s + 0.416·52-s − 0.824·53-s − 1.02·61-s + 1/8·64-s − 0.372·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 85280 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.246941057515520090121407704629, −8.988112755763923473567949959109, −8.443168764159549754361617318408, −8.093495499077584418144224079178, −7.49645022137580213864703164208, −7.02838848597100029296855351179, −6.25486874882998498625565081776, −6.09579540538470638332786209985, −5.32136951849989398797907059640, −4.50401699733099909432370760322, −3.97718011523340342498385759708, −3.18342792008020979736026817680, −2.47890192988795359157034902710, −1.52552087378986494284403548026, 0,
1.52552087378986494284403548026, 2.47890192988795359157034902710, 3.18342792008020979736026817680, 3.97718011523340342498385759708, 4.50401699733099909432370760322, 5.32136951849989398797907059640, 6.09579540538470638332786209985, 6.25486874882998498625565081776, 7.02838848597100029296855351179, 7.49645022137580213864703164208, 8.093495499077584418144224079178, 8.443168764159549754361617318408, 8.988112755763923473567949959109, 9.246941057515520090121407704629