Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 14 x^{2} + 529 x^{4}$ |
| Frobenius angles: | $\pm0.200780744796$, $\pm0.799219255204$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{15})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $48$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $516$ | $266256$ | $148055364$ | $78794735616$ | $41426498344836$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $502$ | $12168$ | $281566$ | $6436344$ | $148074838$ | $3404825448$ | $78310618558$ | $1801152661464$ | $41426485476022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=3 x^6+12 x^5+18 x^4+8 x^3+18 x^2+22 x+8$
- $y^2=11 x^6+22 x^5+18 x^4+4 x^3+10 x^2+19 x+4$
- $y^2=15 x^6+9 x^5+4 x^4+3 x^3+19 x^2+8 x+15$
- $y^2=18 x^6+7 x^5+3 x^4+2 x^2+9 x+4$
- $y^2=21 x^6+12 x^5+15 x^4+10 x^2+22 x+20$
- $y^2=12 x^6+17 x^5+6 x^4+4 x^3+11 x^2+22 x+19$
- $y^2=10 x^6+11 x^4+12 x^3+2 x^2+18 x+5$
- $y^2=4 x^6+9 x^4+14 x^3+10 x^2+21 x+2$
- $y^2=7 x^6+11 x^5+7 x^4+14 x^3+5 x+6$
- $y^2=12 x^6+9 x^5+12 x^4+x^3+2 x+7$
- $y^2=16 x^6+9 x^5+16 x^3+5 x^2+x+11$
- $y^2=15 x^6+22 x^5+4 x^4+2 x^3+22 x^2+10 x+3$
- $y^2=8 x^6+22 x^4+10 x^3+9 x^2+10$
- $y^2=8 x^6+15 x^5+10 x^4+13 x^3+9 x^2+16 x+7$
- $y^2=17 x^6+6 x^5+4 x^4+19 x^3+22 x^2+11 x+12$
- $y^2=6 x^6+6 x^5+21 x^4+16 x^3+12 x^2+9 x+15$
- $y^2=12 x^6+12 x^5+7 x^4+5 x^3+14 x^2+20 x+17$
- $y^2=14 x^6+14 x^5+12 x^4+2 x^3+x^2+8 x+16$
- $y^2=11 x^6+13 x^5+22 x^4+6 x^3+12 x^2+2 x+16$
- $y^2=14 x^6+21 x^5+14 x^4+11 x^3+12 x^2+22 x+6$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{15})\). |
| The base change of $A$ to $\F_{23^{2}}$ is 1.529.ao 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-30}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.23.a_o | $4$ | (not in LMFDB) |
| 2.23.ai_bg | $8$ | (not in LMFDB) |
| 2.23.i_bg | $8$ | (not in LMFDB) |