Invariants
Base field: | $\F_{11}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 8 x^{2} + 121 x^{4}$ |
Frobenius angles: | $\pm0.190767538157$, $\pm0.809232461843$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-14}, \sqrt{30})\) |
Galois group: | $C_2^2$ |
Jacobians: | $12$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $114$ | $12996$ | $1773954$ | $219632400$ | $25937115954$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $12$ | $106$ | $1332$ | $14998$ | $161052$ | $1776346$ | $19487172$ | $214354078$ | $2357947692$ | $25936807306$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=7 x^6+2 x^5+5 x^4+7 x^3+9 x^2+10$
- $y^2=3 x^6+4 x^5+10 x^4+3 x^3+7 x^2+9$
- $y^2=9 x^6+8 x^5+6 x^4+7 x^3+2 x+10$
- $y^2=7 x^6+5 x^5+x^4+3 x^3+4 x+9$
- $y^2=8 x^6+7 x^5+8 x^4+3 x^3+9 x+3$
- $y^2=5 x^6+3 x^5+5 x^4+6 x^3+7 x+6$
- $y^2=2 x^6+10 x^5+x^4+3 x^3+x^2+4 x+5$
- $y^2=4 x^6+9 x^5+2 x^4+6 x^3+2 x^2+8 x+10$
- $y^2=8 x^6+x^5+2 x^4+9 x^3+x^2+10 x$
- $y^2=5 x^6+2 x^5+4 x^4+7 x^3+2 x^2+9 x$
- $y^2=7 x^6+10 x^5+7 x^4+7 x^3+10 x^2+6 x+5$
- $y^2=3 x^6+9 x^5+3 x^4+3 x^3+9 x^2+x+10$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-14}, \sqrt{30})\). |
The base change of $A$ to $\F_{11^{2}}$ is 1.121.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-105}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.11.a_i | $4$ | (not in LMFDB) |