Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 53 x^{2} )( 1 + 12 x + 53 x^{2} )$ |
| $1 + 6 x + 34 x^{2} + 318 x^{3} + 2809 x^{4}$ | |
| Frobenius angles: | $\pm0.364801829573$, $\pm0.808354237277$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $400$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3168$ | $7983360$ | $22247599968$ | $62298309427200$ | $174855959909962848$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $2842$ | $149436$ | $7895374$ | $418120140$ | $22164379594$ | $1174710468012$ | $62259704035486$ | $3299763738697308$ | $174887469182697082$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 400 curves (of which all are hyperelliptic):
- $y^2=28 x^6+48 x^5+3 x^4+16 x^3+17 x^2+15 x+29$
- $y^2=26 x^6+40 x^5+22 x^4+28 x^3+24 x^2+8 x+27$
- $y^2=19 x^6+34 x^5+18 x^4+13 x^3+48 x^2+18 x+5$
- $y^2=14 x^6+32 x^5+25 x^4+46 x^3+9 x^2+13 x+4$
- $y^2=47 x^6+18 x^5+13 x^4+17 x^3+50 x^2+39 x+10$
- $y^2=21 x^6+22 x^5+28 x^4+6 x^3+39 x^2+14 x+41$
- $y^2=45 x^6+18 x^5+29 x^4+29 x^3+25 x^2+45 x+28$
- $y^2=22 x^6+39 x^5+11 x^4+4 x^3+x^2+46 x+20$
- $y^2=12 x^6+9 x^5+10 x^4+14 x^3+32 x^2+38 x+5$
- $y^2=6 x^6+32 x^5+10 x^4+12 x^3+32 x^2+10 x+43$
- $y^2=42 x^6+9 x^5+18 x^4+40 x^3+13 x^2+2 x+19$
- $y^2=45 x^6+32 x^5+26 x^4+10 x^3+27 x^2+4 x+48$
- $y^2=51 x^6+19 x^5+37 x^4+23 x^3+18 x^2+38 x+3$
- $y^2=47 x^6+13 x^5+51 x^4+22 x^3+45 x^2+46 x+42$
- $y^2=8 x^6+7 x^5+44 x^4+36 x^3+42 x^2+9 x+34$
- $y^2=16 x^6+12 x^5+10 x^4+12 x^3+25 x^2+29 x+38$
- $y^2=19 x^6+5 x^5+13 x^4+22 x^3+37 x^2+47 x+13$
- $y^2=52 x^6+13 x^5+40 x^4+10 x^3+47 x^2+32 x+31$
- $y^2=31 x^6+5 x^5+8 x^4+40 x^3+30 x^2+24 x+11$
- $y^2=17 x^6+24 x^5+48 x^4+35 x^3+14 x^2+44 x+47$
- and 380 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The isogeny class factors as 1.53.ag $\times$ 1.53.m and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.as_gw | $2$ | (not in LMFDB) |
| 2.53.ag_bi | $2$ | (not in LMFDB) |
| 2.53.s_gw | $2$ | (not in LMFDB) |