Invariants
| Base field: | $\F_{83}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 134 x^{2} + 6889 x^{4}$ |
| Frobenius angles: | $\pm0.100483150443$, $\pm0.899516849557$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-2}, \sqrt{3})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $120$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6756$ | $45643536$ | $326940736644$ | $2251895782772736$ | $15516041195083027236$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $84$ | $6622$ | $571788$ | $47449966$ | $3939040644$ | $326941099918$ | $27136050989628$ | $2252292387060958$ | $186940255267540404$ | $15516041202960201022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=71 x^6+65 x^5+5 x^4+21 x^3+29 x^2+12 x+63$
- $y^2=42 x^6+10 x^5+9 x^4+5 x^3+6 x^2+50 x+43$
- $y^2=74 x^6+57 x^5+37 x^4+24 x^3+39 x^2+38 x+64$
- $y^2=65 x^6+31 x^5+74 x^4+48 x^3+78 x^2+76 x+45$
- $y^2=30 x^6+26 x^5+40 x^4+50 x^3+78 x^2+68 x+38$
- $y^2=37 x^6+x^5+5 x^4+29 x^3+78 x^2+22 x+18$
- $y^2=74 x^6+2 x^5+10 x^4+58 x^3+73 x^2+44 x+36$
- $y^2=12 x^6+23 x^5+81 x^4+20 x^3+47 x^2+65 x+15$
- $y^2=4 x^6+49 x^5+56 x^4+6 x^3+10 x^2+21 x+47$
- $y^2=8 x^6+15 x^5+29 x^4+12 x^3+20 x^2+42 x+11$
- $y^2=82 x^6+79 x^5+23 x^4+32 x^3+72 x^2+54 x+17$
- $y^2=x^6+x^3+42$
- $y^2=67 x^6+77 x^5+46 x^4+22 x^3+41 x^2+3 x+36$
- $y^2=68 x^6+75 x^5+81 x^4+66 x^3+21 x^2+15 x+81$
- $y^2=53 x^6+67 x^5+79 x^4+49 x^3+42 x^2+30 x+79$
- $y^2=74 x^6+15 x^5+19 x^4+50 x^3+65 x^2+76 x+10$
- $y^2=36 x^6+6 x^5+80 x^4+19 x^3+28 x^2+54 x+71$
- $y^2=72 x^6+12 x^5+77 x^4+38 x^3+56 x^2+25 x+59$
- $y^2=76 x^6+47 x^5+50 x^4+65 x^3+64 x^2+45 x+61$
- $y^2=44 x^6+42 x^5+16 x^4+5 x^3+35 x^2+46 x+57$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{3})\). |
| The base change of $A$ to $\F_{83^{2}}$ is 1.6889.afe 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.