Invariants
Base field: | $\F_{17}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 17 x^{2} )( 1 + 6 x + 17 x^{2} )$ |
$1 + 6 x + 34 x^{2} + 102 x^{3} + 289 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.759367463010$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $44$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $432$ | $93312$ | $23705136$ | $6975258624$ | $2013279131952$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $24$ | $322$ | $4824$ | $83518$ | $1417944$ | $24149122$ | $410360856$ | $6975427966$ | $118588474008$ | $2015995916482$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 44 curves (of which all are hyperelliptic):
- $y^2=11 x^6+10 x^5+2 x^4+4 x^2+6 x+3$
- $y^2=11 x^6+14 x^5+5 x^4+7 x^3+5 x^2+14 x+11$
- $y^2=9 x^6+3 x^5+11 x^4+8 x^3+12 x^2+x+5$
- $y^2=12 x^6+9 x^4+15 x^3+9 x^2+12$
- $y^2=2 x^6+9 x^5+16 x^4+3 x^3+16 x^2+9 x+2$
- $y^2=6 x^6+16 x^5+6 x^4+6 x^3+14 x^2+4 x+2$
- $y^2=10 x^5+11 x^4+16 x^3+x^2+15 x+1$
- $y^2=7 x^6+3 x^5+14 x^4+4 x^3+14 x^2+3 x+7$
- $y^2=7 x^5+8 x^4+5 x^3+8 x^2+7 x$
- $y^2=5 x^6+3 x^5+4 x^4+14 x^3+2 x^2+15 x+3$
- $y^2=14 x^6+7 x^5+6 x^4+7 x^3+8 x^2+3 x+2$
- $y^2=8 x^6+5 x^5+15 x^4+14 x^3+4 x+14$
- $y^2=x^6+10 x^5+9 x^4+13 x^2+7 x+9$
- $y^2=8 x^6+7 x^5+6 x^4+6 x^3+8 x^2+10 x+8$
- $y^2=13 x^6+6 x^5+13 x^4+4 x^3+12 x^2+9 x+15$
- $y^2=4 x^6+15 x^5+2 x^4+x^3+8 x^2+13$
- $y^2=2 x^6+16 x^5+14 x^4+5 x^3+12 x^2+14 x+6$
- $y^2=9 x^6+7 x^5+10 x^4+10 x^3+9 x+2$
- $y^2=8 x^6+2 x^5+16 x^4+4 x^3+x^2+2 x+9$
- $y^2=15 x^6+7 x^5+6 x^4+15 x^3+6 x^2+7 x+15$
- and 24 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17^{2}}$.
Endomorphism algebra over $\F_{17}$The isogeny class factors as 1.17.a $\times$ 1.17.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{17^{2}}$ is 1.289.ac $\times$ 1.289.bi. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.17.ag_bi | $2$ | (not in LMFDB) |