Properties

Label 4-792e2-1.1-c1e2-0-23
Degree $4$
Conductor $627264$
Sign $1$
Analytic cond. $39.9948$
Root an. cond. $2.51478$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·25-s + 4·37-s + 10·49-s + 8·67-s − 4·97-s + 16·103-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯
L(s)  = 1  − 6/5·25-s + 0.657·37-s + 10/7·49-s + 0.977·67-s − 0.406·97-s + 1.57·103-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(627264\)    =    \(2^{6} \cdot 3^{4} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(39.9948\)
Root analytic conductor: \(2.51478\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 627264,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.698310743\)
\(L(\frac12)\) \(\approx\) \(1.698310743\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11$C_2$ \( 1 + p T^{2} \)
good5$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.5.a_g
7$C_2^2$ \( 1 - 10 T^{2} + p^{2} T^{4} \) 2.7.a_ak
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.13.a_aw
17$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.17.a_be
19$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.19.a_aw
23$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.23.a_k
29$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.29.a_cc
31$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.31.a_ck
37$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.37.ae_da
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.a_bu
43$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \) 2.43.a_aw
47$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.47.a_dm
53$C_2$ \( ( 1 - 10 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.53.a_g
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.59.a_dy
61$C_2^2$ \( 1 + 74 T^{2} + p^{2} T^{4} \) 2.61.a_cw
67$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \) 2.67.ai_fu
71$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.71.a_ec
73$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \) 2.73.a_ade
79$C_2^2$ \( 1 - 154 T^{2} + p^{2} T^{4} \) 2.79.a_afy
83$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.83.a_w
89$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \) 2.89.a_ek
97$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \) 2.97.e_hq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.246196331263091819627367608601, −7.996114807327102512590680393858, −7.50955554798295160504139106178, −7.07549120086050049024187336237, −6.58254483889784316796781990535, −6.07037199562978159931929152475, −5.66301411913932061566169645891, −5.21348839032731329293578942846, −4.58543388489392184451235574774, −4.06885984735029136182146321410, −3.65903961394221679196011580528, −2.93290349617152871656365092856, −2.33010202518036217270441373818, −1.68341421663008480180979980820, −0.66309144754924921756791130989, 0.66309144754924921756791130989, 1.68341421663008480180979980820, 2.33010202518036217270441373818, 2.93290349617152871656365092856, 3.65903961394221679196011580528, 4.06885984735029136182146321410, 4.58543388489392184451235574774, 5.21348839032731329293578942846, 5.66301411913932061566169645891, 6.07037199562978159931929152475, 6.58254483889784316796781990535, 7.07549120086050049024187336237, 7.50955554798295160504139106178, 7.996114807327102512590680393858, 8.246196331263091819627367608601

Graph of the $Z$-function along the critical line