L(s) = 1 | − 6·25-s + 4·37-s + 10·49-s + 8·67-s − 4·97-s + 16·103-s − 11·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 22·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + 223-s + 227-s + ⋯ |
L(s) = 1 | − 6/5·25-s + 0.657·37-s + 10/7·49-s + 0.977·67-s − 0.406·97-s + 1.57·103-s − 121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.69·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + 0.0669·223-s + 0.0663·227-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.698310743\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.698310743\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.246196331263091819627367608601, −7.996114807327102512590680393858, −7.50955554798295160504139106178, −7.07549120086050049024187336237, −6.58254483889784316796781990535, −6.07037199562978159931929152475, −5.66301411913932061566169645891, −5.21348839032731329293578942846, −4.58543388489392184451235574774, −4.06885984735029136182146321410, −3.65903961394221679196011580528, −2.93290349617152871656365092856, −2.33010202518036217270441373818, −1.68341421663008480180979980820, −0.66309144754924921756791130989,
0.66309144754924921756791130989, 1.68341421663008480180979980820, 2.33010202518036217270441373818, 2.93290349617152871656365092856, 3.65903961394221679196011580528, 4.06885984735029136182146321410, 4.58543388489392184451235574774, 5.21348839032731329293578942846, 5.66301411913932061566169645891, 6.07037199562978159931929152475, 6.58254483889784316796781990535, 7.07549120086050049024187336237, 7.50955554798295160504139106178, 7.996114807327102512590680393858, 8.246196331263091819627367608601