L(s) = 1 | − 4·7-s − 12·13-s − 4·19-s − 10·25-s − 8·31-s + 4·37-s − 12·43-s − 2·49-s − 4·61-s − 16·67-s − 4·73-s + 28·79-s + 48·91-s + 4·97-s − 32·103-s + 20·109-s + 121-s + 127-s + 131-s + 16·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | − 1.51·7-s − 3.32·13-s − 0.917·19-s − 2·25-s − 1.43·31-s + 0.657·37-s − 1.82·43-s − 2/7·49-s − 0.512·61-s − 1.95·67-s − 0.468·73-s + 3.15·79-s + 5.03·91-s + 0.406·97-s − 3.15·103-s + 1.91·109-s + 1/11·121-s + 0.0887·127-s + 0.0873·131-s + 1.38·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 627264 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.85434660890847189459509785541, −7.50735959345867726619243932720, −6.99088352214422238304065287416, −6.63931092999173915150692363216, −6.23628274432277747584412267863, −5.50741629586206527704817119804, −5.29166971519846954552011306798, −4.44213226905447513478067644262, −4.33765166705823820039761227894, −3.23609115598580461776406214489, −3.19842498721549312761992844928, −2.09956832166684944283019100832, −2.08943186270177677187465865509, 0, 0,
2.08943186270177677187465865509, 2.09956832166684944283019100832, 3.19842498721549312761992844928, 3.23609115598580461776406214489, 4.33765166705823820039761227894, 4.44213226905447513478067644262, 5.29166971519846954552011306798, 5.50741629586206527704817119804, 6.23628274432277747584412267863, 6.63931092999173915150692363216, 6.99088352214422238304065287416, 7.50735959345867726619243932720, 7.85434660890847189459509785541