L(s) = 1 | + 2·7-s + 4·13-s + 10·19-s − 25-s − 2·31-s + 22·37-s − 8·43-s + 3·49-s + 16·61-s − 20·67-s + 16·73-s − 8·79-s + 8·91-s + 16·97-s − 2·103-s + 10·109-s − 13·121-s + 127-s + 131-s + 20·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯ |
L(s) = 1 | + 0.755·7-s + 1.10·13-s + 2.29·19-s − 1/5·25-s − 0.359·31-s + 3.61·37-s − 1.21·43-s + 3/7·49-s + 2.04·61-s − 2.44·67-s + 1.87·73-s − 0.900·79-s + 0.838·91-s + 1.62·97-s − 0.197·103-s + 0.957·109-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 1.73·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.631254740\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.631254740\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.466277786008860761528360587893, −7.84864688607256323547159673807, −7.61952382486316697392708528894, −7.30924731734776499279588656485, −6.49821726406191861904352357423, −6.13420642981607383189262446190, −5.72528761624831930091939868733, −4.99058996855721417798172650794, −4.94067034627983846611888050438, −3.94315135306159377097127451803, −3.77158200162492178571915460059, −2.94385537373119390686821402049, −2.44662848712626536551871227031, −1.41871132954067485584883752975, −0.973349387225327894799119470748,
0.973349387225327894799119470748, 1.41871132954067485584883752975, 2.44662848712626536551871227031, 2.94385537373119390686821402049, 3.77158200162492178571915460059, 3.94315135306159377097127451803, 4.94067034627983846611888050438, 4.99058996855721417798172650794, 5.72528761624831930091939868733, 6.13420642981607383189262446190, 6.49821726406191861904352357423, 7.30924731734776499279588656485, 7.61952382486316697392708528894, 7.84864688607256323547159673807, 8.466277786008860761528360587893