Properties

Label 4-756e2-1.1-c1e2-0-18
Degree $4$
Conductor $571536$
Sign $1$
Analytic cond. $36.4416$
Root an. cond. $2.45696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 4·13-s + 10·19-s − 25-s − 2·31-s + 22·37-s − 8·43-s + 3·49-s + 16·61-s − 20·67-s + 16·73-s − 8·79-s + 8·91-s + 16·97-s − 2·103-s + 10·109-s − 13·121-s + 127-s + 131-s + 20·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 0.755·7-s + 1.10·13-s + 2.29·19-s − 1/5·25-s − 0.359·31-s + 3.61·37-s − 1.21·43-s + 3/7·49-s + 2.04·61-s − 2.44·67-s + 1.87·73-s − 0.900·79-s + 0.838·91-s + 1.62·97-s − 0.197·103-s + 0.957·109-s − 1.18·121-s + 0.0887·127-s + 0.0873·131-s + 1.73·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(571536\)    =    \(2^{4} \cdot 3^{6} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(36.4416\)
Root analytic conductor: \(2.45696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 571536,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.631254740\)
\(L(\frac12)\) \(\approx\) \(2.631254740\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7$C_1$ \( ( 1 - T )^{2} \)
good5$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.5.a_b
11$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.11.a_n
13$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \) 2.13.ae_be
17$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.17.a_ac
19$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \) 2.19.ak_cl
23$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.23.a_abj
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.29.a_w
31$C_2$ \( ( 1 + T + p T^{2} )^{2} \) 2.31.c_cl
37$C_2$ \( ( 1 - 11 T + p T^{2} )^{2} \) 2.37.aw_hn
41$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.41.a_cv
43$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.43.i_dy
47$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.47.a_aby
53$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.53.a_ec
59$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.59.a_eo
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.61.aq_he
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \) 2.67.u_ja
71$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.71.a_fd
73$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.73.aq_ic
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \) 2.79.i_gs
83$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.83.a_fa
89$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.89.a_gn
97$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \) 2.97.aq_jy
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.466277786008860761528360587893, −7.84864688607256323547159673807, −7.61952382486316697392708528894, −7.30924731734776499279588656485, −6.49821726406191861904352357423, −6.13420642981607383189262446190, −5.72528761624831930091939868733, −4.99058996855721417798172650794, −4.94067034627983846611888050438, −3.94315135306159377097127451803, −3.77158200162492178571915460059, −2.94385537373119390686821402049, −2.44662848712626536551871227031, −1.41871132954067485584883752975, −0.973349387225327894799119470748, 0.973349387225327894799119470748, 1.41871132954067485584883752975, 2.44662848712626536551871227031, 2.94385537373119390686821402049, 3.77158200162492178571915460059, 3.94315135306159377097127451803, 4.94067034627983846611888050438, 4.99058996855721417798172650794, 5.72528761624831930091939868733, 6.13420642981607383189262446190, 6.49821726406191861904352357423, 7.30924731734776499279588656485, 7.61952382486316697392708528894, 7.84864688607256323547159673807, 8.466277786008860761528360587893

Graph of the $Z$-function along the critical line