Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 8 x + 61 x^{2} )^{2}$ |
$1 - 16 x + 186 x^{2} - 976 x^{3} + 3721 x^{4}$ | |
Frobenius angles: | $\pm0.328850104905$, $\pm0.328850104905$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $53$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2916$ | $14288400$ | $51953908356$ | $191820284006400$ | $713299927426289316$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $3838$ | $228886$ | $13853998$ | $844545406$ | $51519469678$ | $3142738703206$ | $191707335120478$ | $11694146521921486$ | $713342913746066398$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 53 curves (of which all are hyperelliptic):
- $y^2=50 x^6+2 x^5+24 x^4+30 x^3+24 x^2+2 x+50$
- $y^2=16 x^6+58 x^4+58 x^2+16$
- $y^2=52 x^6+50 x^5+6 x^4+47 x^3+60 x^2+50 x+49$
- $y^2=37 x^6+3 x^5+35 x^4+24 x^3+36 x^2+44 x+50$
- $y^2=7 x^6+42 x^5+51 x^4+55 x^3+26 x^2+57 x+18$
- $y^2=49 x^6+54 x^5+10 x^4+34 x^3+7 x^2+13 x+37$
- $y^2=52 x^6+25 x^5+40 x^4+26 x^3+7 x^2+57 x+41$
- $y^2=29 x^6+10 x^5+27 x^4+34 x^3+27 x^2+10 x+29$
- $y^2=27 x^6+x^5+9 x^4+35 x^3+9 x^2+x+27$
- $y^2=39 x^6+60 x^5+15 x^4+10 x^3+2 x^2+56 x+7$
- $y^2=x^6+16 x^3+9$
- $y^2=38 x^6+59 x^5+42 x^4+2 x^3+42 x^2+59 x+38$
- $y^2=x^6+x^3+20$
- $y^2=32 x^6+44 x^5+19 x^4+38 x^3+22 x^2+31 x+5$
- $y^2=60 x^6+24 x^5+9 x^4+3 x^3+9 x^2+24 x+60$
- $y^2=58 x^6+10 x^5+56 x^4+3 x^3+56 x^2+10 x+58$
- $y^2=9 x^6+3 x^5+46 x^4+4 x^3+46 x^2+3 x+9$
- $y^2=42 x^6+50 x^5+41 x^4+13 x^3+32 x^2+23 x+11$
- $y^2=11 x^6+15 x^5+47 x^4+30 x^3+55 x^2+60 x+45$
- $y^2=58 x^6+23 x^4+23 x^2+58$
- and 33 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The isogeny class factors as 1.61.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$ |
Base change
This is a primitive isogeny class.