Properties

Label 2.61.aq_he
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $( 1 - 8 x + 61 x^{2} )^{2}$
  $1 - 16 x + 186 x^{2} - 976 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.328850104905$, $\pm0.328850104905$
Angle rank:  $1$ (numerical)
Jacobians:  $53$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2916$ $14288400$ $51953908356$ $191820284006400$ $713299927426289316$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $46$ $3838$ $228886$ $13853998$ $844545406$ $51519469678$ $3142738703206$ $191707335120478$ $11694146521921486$ $713342913746066398$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 53 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The isogeny class factors as 1.61.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-5}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.a_cg$2$(not in LMFDB)
2.61.q_he$2$(not in LMFDB)
2.61.i_d$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.a_cg$2$(not in LMFDB)
2.61.q_he$2$(not in LMFDB)
2.61.i_d$3$(not in LMFDB)
2.61.a_acg$4$(not in LMFDB)
2.61.ai_d$6$(not in LMFDB)