Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 8 x + 73 x^{2} )^{2}$ |
| $1 - 16 x + 210 x^{2} - 1168 x^{3} + 5329 x^{4}$ | |
| Frobenius angles: | $\pm0.344915434243$, $\pm0.344915434243$ |
| Angle rank: | $1$ (numerical) |
| Jacobians: | $42$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4356$ | $29289744$ | $152301306564$ | $806683601534976$ | $4297381015873402116$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $58$ | $5494$ | $391498$ | $28406110$ | $2072953498$ | $151332707158$ | $11047394987050$ | $806460174534334$ | $58871587627229434$ | $4297625831022511414$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 42 curves (of which all are hyperelliptic):
- $y^2=48 x^6+72 x^5+37 x^4+44 x^3+12 x^2+25 x+62$
- $y^2=10 x^6+4 x^5+14 x^4+48 x^3+14 x^2+4 x+10$
- $y^2=33 x^6+43 x^5+14 x^4+44 x^3+43 x^2+62 x+65$
- $y^2=60 x^6+48 x^5+26 x^4+11 x^3+26 x^2+48 x+60$
- $y^2=59 x^6+43 x^5+54 x^4+69 x^3+27 x^2+58 x+54$
- $y^2=59 x^6+9 x^5+51 x^4+11 x^3+5 x^2+41 x+53$
- $y^2=14 x^6+66 x^5+12 x^4+12 x^3+51 x^2+43 x+10$
- $y^2=63 x^6+62 x^5+23 x^4+8 x^3+64 x^2+51 x+63$
- $y^2=34 x^6+24 x^5+11 x^4+19 x^3+11 x^2+24 x+34$
- $y^2=21 x^6+8 x^4+8 x^2+21$
- $y^2=67 x^6+26 x^5+31 x^4+2 x^3+10 x^2+22 x+71$
- $y^2=17 x^6+46 x^5+52 x^4+5 x^3+50 x^2+42 x+47$
- $y^2=11 x^6+4 x^5+59 x^4+4 x^3+21 x+31$
- $y^2=8 x^6+58 x^5+58 x^4+37 x^3+62 x^2+68 x+13$
- $y^2=44 x^6+68 x^5+62 x^3+28 x^2+7 x+30$
- $y^2=34 x^6+58 x^5+31 x^4+30 x^3+46 x^2+66 x+71$
- $y^2=5 x^6+55 x^5+6 x^4+58 x^3+x^2+30 x+19$
- $y^2=58 x^6+3 x^5+16 x^4+50 x^3+16 x^2+65 x+53$
- $y^2=40 x^6+57 x^5+38 x^4+20 x^3+22 x^2+17 x+5$
- $y^2=13 x^6+16 x^5+43 x^4+71 x^3+52 x^2+22 x+2$
- and 22 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The isogeny class factors as 1.73.ai 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$ |
Base change
This is a primitive isogeny class.