L(s) = 1 | + 5·7-s − 10·25-s − 2·37-s + 16·43-s + 18·49-s + 22·67-s − 26·79-s + 4·109-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 23·169-s + 173-s − 50·175-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + ⋯ |
L(s) = 1 | + 1.88·7-s − 2·25-s − 0.328·37-s + 2.43·43-s + 18/7·49-s + 2.68·67-s − 2.92·79-s + 0.383·109-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 1.76·169-s + 0.0760·173-s − 3.77·175-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 571536 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.432512266\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.432512266\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.321813700481147925892685842672, −8.079851394884847745055740317792, −7.51552880521900195309523002532, −7.31346310196346190295346056081, −6.70078665608916533782840710374, −5.98139804295706451305092616431, −5.49030247404272458638604331312, −5.41619595580815395232018816358, −4.44194996130619826314058940000, −4.33573970367631074650890566231, −3.77813458199186956523245005153, −2.91173766719274595341337420733, −2.12496210928289498867796346468, −1.79680621722010121991203363355, −0.833659174677608845252044473607,
0.833659174677608845252044473607, 1.79680621722010121991203363355, 2.12496210928289498867796346468, 2.91173766719274595341337420733, 3.77813458199186956523245005153, 4.33573970367631074650890566231, 4.44194996130619826314058940000, 5.41619595580815395232018816358, 5.49030247404272458638604331312, 5.98139804295706451305092616431, 6.70078665608916533782840710374, 7.31346310196346190295346056081, 7.51552880521900195309523002532, 8.079851394884847745055740317792, 8.321813700481147925892685842672