| L(s) = 1 | − 6·9-s + 12·13-s + 4·17-s − 6·25-s − 20·29-s − 4·37-s − 14·49-s + 28·53-s − 12·73-s + 27·81-s + 12·109-s − 72·117-s − 22·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 24·153-s + 157-s + 163-s + 167-s + 82·169-s + 173-s + 179-s + 181-s + ⋯ |
| L(s) = 1 | − 2·9-s + 3.32·13-s + 0.970·17-s − 6/5·25-s − 3.71·29-s − 0.657·37-s − 2·49-s + 3.84·53-s − 1.40·73-s + 3·81-s + 1.14·109-s − 6.65·117-s − 2·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s − 1.94·153-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 6.30·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 739328 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 739328 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.082347486973466875367987545617, −7.77199473906097062385997282225, −7.28916126993973683380301647461, −6.56558924270052789983772431797, −5.96126926568006819265365532145, −5.87146418848833687506982135026, −5.57799879021137608863398098635, −5.09050475729599485889830101555, −3.85524114672212228883256453900, −3.67478222653086463350186782835, −3.56978615589504816697349130571, −2.67167944220030971104507326816, −1.87948404419680995103462610417, −1.22433077509918601428054581575, 0,
1.22433077509918601428054581575, 1.87948404419680995103462610417, 2.67167944220030971104507326816, 3.56978615589504816697349130571, 3.67478222653086463350186782835, 3.85524114672212228883256453900, 5.09050475729599485889830101555, 5.57799879021137608863398098635, 5.87146418848833687506982135026, 5.96126926568006819265365532145, 6.56558924270052789983772431797, 7.28916126993973683380301647461, 7.77199473906097062385997282225, 8.082347486973466875367987545617