L(s) = 1 | + 2-s + 4-s + 2·7-s + 8-s − 6·11-s − 4·13-s + 2·14-s + 16-s + 6·17-s + 3·19-s − 6·22-s + 6·23-s + 2·25-s − 4·26-s + 2·28-s + 2·31-s + 32-s + 6·34-s + 2·37-s + 3·38-s − 3·41-s + 9·43-s − 6·44-s + 6·46-s − 12·47-s − 49-s + 2·50-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.755·7-s + 0.353·8-s − 1.80·11-s − 1.10·13-s + 0.534·14-s + 1/4·16-s + 1.45·17-s + 0.688·19-s − 1.27·22-s + 1.25·23-s + 2/5·25-s − 0.784·26-s + 0.377·28-s + 0.359·31-s + 0.176·32-s + 1.02·34-s + 0.328·37-s + 0.486·38-s − 0.468·41-s + 1.37·43-s − 0.904·44-s + 0.884·46-s − 1.75·47-s − 1/7·49-s + 0.282·50-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.938985184\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.938985184\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.8952882724, −12.6131253668, −12.0778483773, −11.7262647951, −11.3367721949, −10.8668580644, −10.4638078072, −10.0762462388, −9.71008861684, −9.21301436352, −8.48531070042, −8.09582399785, −7.61439928110, −7.47191799645, −6.94180385153, −6.24574964428, −5.64008978985, −5.22053064604, −4.86849807357, −4.66566460267, −3.60555159036, −3.07672039174, −2.65492617114, −1.92661784880, −0.876947519158,
0.876947519158, 1.92661784880, 2.65492617114, 3.07672039174, 3.60555159036, 4.66566460267, 4.86849807357, 5.22053064604, 5.64008978985, 6.24574964428, 6.94180385153, 7.47191799645, 7.61439928110, 8.09582399785, 8.48531070042, 9.21301436352, 9.71008861684, 10.0762462388, 10.4638078072, 10.8668580644, 11.3367721949, 11.7262647951, 12.0778483773, 12.6131253668, 12.8952882724