Properties

Label 4-72e3-1.1-c1e2-0-11
Degree $4$
Conductor $373248$
Sign $1$
Analytic cond. $23.7986$
Root an. cond. $2.20870$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·7-s + 8-s − 6·11-s − 4·13-s + 2·14-s + 16-s + 6·17-s + 3·19-s − 6·22-s + 6·23-s + 2·25-s − 4·26-s + 2·28-s + 2·31-s + 32-s + 6·34-s + 2·37-s + 3·38-s − 3·41-s + 9·43-s − 6·44-s + 6·46-s − 12·47-s − 49-s + 2·50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.755·7-s + 0.353·8-s − 1.80·11-s − 1.10·13-s + 0.534·14-s + 1/4·16-s + 1.45·17-s + 0.688·19-s − 1.27·22-s + 1.25·23-s + 2/5·25-s − 0.784·26-s + 0.377·28-s + 0.359·31-s + 0.176·32-s + 1.02·34-s + 0.328·37-s + 0.486·38-s − 0.468·41-s + 1.37·43-s − 0.904·44-s + 0.884·46-s − 1.75·47-s − 1/7·49-s + 0.282·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 373248 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(373248\)    =    \(2^{9} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(23.7986\)
Root analytic conductor: \(2.20870\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 373248,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.938985184\)
\(L(\frac12)\) \(\approx\) \(2.938985184\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_1$ \( 1 - T \)
3 \( 1 \)
good5$C_2^2$ \( 1 - 2 T^{2} + p^{2} T^{4} \) 2.5.a_ac
7$D_{4}$ \( 1 - 2 T + 5 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.7.ac_f
11$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.11.g_w
13$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.13.e_o
17$C_2^2$ \( 1 - 6 T + 19 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.17.ag_t
19$D_{4}$ \( 1 - 3 T - 8 T^{2} - 3 p T^{3} + p^{2} T^{4} \) 2.19.ad_ai
23$D_{4}$ \( 1 - 6 T + 49 T^{2} - 6 p T^{3} + p^{2} T^{4} \) 2.23.ag_bx
29$C_2^2$ \( 1 + 28 T^{2} + p^{2} T^{4} \) 2.29.a_bc
31$D_{4}$ \( 1 - 2 T - 7 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.31.ac_ah
37$D_{4}$ \( 1 - 2 T - 10 T^{2} - 2 p T^{3} + p^{2} T^{4} \) 2.37.ac_ak
41$D_{4}$ \( 1 + 3 T + 76 T^{2} + 3 p T^{3} + p^{2} T^{4} \) 2.41.d_cy
43$D_{4}$ \( 1 - 9 T + 40 T^{2} - 9 p T^{3} + p^{2} T^{4} \) 2.43.aj_bo
47$D_{4}$ \( 1 + 12 T + 109 T^{2} + 12 p T^{3} + p^{2} T^{4} \) 2.47.m_ef
53$D_{4}$ \( 1 + 6 T + 28 T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.53.g_bc
59$D_{4}$ \( 1 - 15 T + 148 T^{2} - 15 p T^{3} + p^{2} T^{4} \) 2.59.ap_fs
61$D_{4}$ \( 1 + 4 T + 44 T^{2} + 4 p T^{3} + p^{2} T^{4} \) 2.61.e_bs
67$C_2$$\times$$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 4 T + p T^{2} ) \) 2.67.ae_dy
71$D_{4}$ \( 1 + 6 T + T^{2} + 6 p T^{3} + p^{2} T^{4} \) 2.71.g_b
73$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.73.d_cy
79$D_{4}$ \( 1 - 14 T + 101 T^{2} - 14 p T^{3} + p^{2} T^{4} \) 2.79.ao_dx
83$C_2$$\times$$C_2$ \( ( 1 + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.83.j_gk
89$D_{4}$ \( 1 - 12 T + 130 T^{2} - 12 p T^{3} + p^{2} T^{4} \) 2.89.am_fa
97$D_{4}$ \( 1 - 18 T + 166 T^{2} - 18 p T^{3} + p^{2} T^{4} \) 2.97.as_gk
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.8952882724, −12.6131253668, −12.0778483773, −11.7262647951, −11.3367721949, −10.8668580644, −10.4638078072, −10.0762462388, −9.71008861684, −9.21301436352, −8.48531070042, −8.09582399785, −7.61439928110, −7.47191799645, −6.94180385153, −6.24574964428, −5.64008978985, −5.22053064604, −4.86849807357, −4.66566460267, −3.60555159036, −3.07672039174, −2.65492617114, −1.92661784880, −0.876947519158, 0.876947519158, 1.92661784880, 2.65492617114, 3.07672039174, 3.60555159036, 4.66566460267, 4.86849807357, 5.22053064604, 5.64008978985, 6.24574964428, 6.94180385153, 7.47191799645, 7.61439928110, 8.09582399785, 8.48531070042, 9.21301436352, 9.71008861684, 10.0762462388, 10.4638078072, 10.8668580644, 11.3367721949, 11.7262647951, 12.0778483773, 12.6131253668, 12.8952882724

Graph of the $Z$-function along the critical line