Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 7 x + 73 x^{2} )( 1 + 10 x + 73 x^{2} )$ |
$1 + 3 x + 76 x^{2} + 219 x^{3} + 5329 x^{4}$ | |
Frobenius angles: | $\pm0.365652920247$, $\pm0.698986253580$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $288$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5628$ | $29175552$ | $151333588224$ | $806738206546944$ | $4297466876825803548$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $77$ | $5473$ | $389018$ | $28408033$ | $2072994917$ | $151332950158$ | $11047406030717$ | $806460130961281$ | $58871586708267914$ | $4297625831889913393$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=23 x^6+64 x^5+29 x^4+69 x^3+38 x^2+23 x+46$
- $y^2=4 x^6+35 x^5+x^4+9 x^3+40 x^2+41 x+61$
- $y^2=55 x^6+4 x^5+32 x^4+18 x^3+43 x^2+12 x+21$
- $y^2=55 x^6+47 x^5+15 x^4+4 x^3+22 x^2+40 x$
- $y^2=9 x^6+5 x^5+13 x^4+53 x^3+3 x^2+61 x+53$
- $y^2=13 x^6+19 x^5+16 x^4+72 x^3+22 x^2+17 x+16$
- $y^2=33 x^6+70 x^5+57 x^4+2 x^3+18 x^2+22 x+70$
- $y^2=64 x^6+64 x^5+16 x^4+37 x^2+64 x+3$
- $y^2=56 x^6+13 x^5+53 x^4+15 x^3+72 x^2+17 x+25$
- $y^2=60 x^6+35 x^5+13 x^4+18 x^3+47 x^2+15 x+24$
- $y^2=55 x^5+12 x^4+20 x^3+4 x^2+30 x+4$
- $y^2=24 x^6+13 x^5+55 x^4+41 x^3+34 x^2+34 x+43$
- $y^2=60 x^6+7 x^5+62 x^4+44 x^3+34 x^2+21 x+57$
- $y^2=24 x^6+41 x^5+10 x^4+68 x^3+65 x^2+42 x+45$
- $y^2=59 x^6+64 x^5+43 x^4+31 x^3+36 x^2+17 x+29$
- $y^2=x^6+50 x^5+45 x^4+18 x^3+60 x^2+61 x+63$
- $y^2=38 x^6+53 x^5+11 x^4+34 x^3+34 x^2+45 x+48$
- $y^2=65 x^6+3 x^5+34 x^4+10 x^3+17 x^2+24$
- $y^2=67 x^6+6 x^5+34 x^3+55 x^2+45 x$
- $y^2=69 x^6+52 x^5+5 x^4+10 x^3+22 x^2+20 x+22$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{6}}$.
Endomorphism algebra over $\F_{73}$The isogeny class factors as 1.73.ah $\times$ 1.73.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{73^{6}}$ is 1.151334226289.abkhxa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
- Endomorphism algebra over $\F_{73^{2}}$
The base change of $A$ to $\F_{73^{2}}$ is 1.5329.bu $\times$ 1.5329.dt. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{73^{3}}$
The base change of $A$ to $\F_{73^{3}}$ is 1.389017.abtu $\times$ 1.389017.btu. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.