Invariants
Base field: | $\F_{11}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 11 x^{2} )( 1 + 6 x + 11 x^{2} )$ |
$1 + 6 x + 22 x^{2} + 66 x^{3} + 121 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.859781100996$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $16$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $216$ | $15552$ | $1798200$ | $211507200$ | $25861408056$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $130$ | $1350$ | $14446$ | $160578$ | $1776562$ | $19478358$ | $214356766$ | $2357881650$ | $25937844130$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=9 x^5+4 x^4+x^3+x^2+10 x+6$
- $y^2=x^6+3 x^5+2 x^4+8 x^3+2 x^2+3 x+1$
- $y^2=4 x^6+7 x^5+7 x^4+2 x^3+7 x^2+7 x+4$
- $y^2=x^6+4 x^5+2 x^4+x^3+6 x^2+3 x+5$
- $y^2=3 x^6+x^5+8 x^4+2 x^3+8 x^2+x+3$
- $y^2=4 x^6+x^5+6 x^4+7 x^2+5 x+1$
- $y^2=6 x^5+7 x^4+3 x^3+5 x^2+5 x+5$
- $y^2=9 x^5+9 x^4+2 x^3+7 x^2+x$
- $y^2=9 x^6+4 x^5+x^4+8 x^3+x^2+7 x+6$
- $y^2=x^6+5 x^5+4 x^4+x^3+4 x^2+5 x+1$
- $y^2=6 x^6+4 x^5+x^4+8 x^3+x^2+4 x+6$
- $y^2=x^6+4 x^4+7 x^3+5 x^2+5 x$
- $y^2=4 x^6+4 x^5+x^4+2 x^3+2 x^2+9 x+5$
- $y^2=4 x^6+8 x^5+6 x^4+10 x^3+7 x^2+x+9$
- $y^2=5 x^6+5 x^5+4 x^4+7 x^3+5 x^2+4 x+3$
- $y^2=9 x^6+2 x^4+x^3+x^2+10 x+2$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{11^{2}}$.
Endomorphism algebra over $\F_{11}$The isogeny class factors as 1.11.a $\times$ 1.11.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{11^{2}}$ is 1.121.ao $\times$ 1.121.w. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.11.ag_w | $2$ | 2.121.i_aco |