Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 83 x^{2} )( 1 + 9 x + 83 x^{2} )$ |
$1 + 9 x + 166 x^{2} + 747 x^{3} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.5$, $\pm0.664443457247$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $336$ |
This isogeny class is not simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7812$ | $49215600$ | $326076973488$ | $2251949350392000$ | $15516303216128532972$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $93$ | $7141$ | $570276$ | $47451097$ | $3939107163$ | $326940374374$ | $27136055751681$ | $2252292189197233$ | $186940254404516508$ | $15516041198537238661$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 336 curves (of which all are hyperelliptic):
- $y^2=43 x^6+17 x^5+19 x^4+53 x^3+62 x^2+81 x+64$
- $y^2=68 x^6+74 x^5+7 x^4+7 x^3+66 x^2+10 x+33$
- $y^2=28 x^6+20 x^5+62 x^4+71 x^3+40 x^2+73 x+16$
- $y^2=79 x^6+4 x^5+3 x^4+52 x^3+43 x^2+65 x+47$
- $y^2=59 x^6+53 x^5+68 x^4+13 x^3+x^2+56 x+62$
- $y^2=44 x^6+38 x^5+3 x^4+55 x^3+63 x^2+76 x+56$
- $y^2=36 x^6+82 x^5+25 x^4+16 x^3+17 x^2+13 x+69$
- $y^2=32 x^6+46 x^5+40 x^4+53 x^3+71 x^2+69 x+25$
- $y^2=44 x^6+82 x^5+45 x^4+12 x^3+45 x^2+x+20$
- $y^2=20 x^6+38 x^5+16 x^4+72 x^3+3 x^2+34 x+64$
- $y^2=9 x^6+29 x^5+74 x^4+41 x^3+71 x^2+75 x+31$
- $y^2=44 x^6+29 x^5+28 x^4+62 x^3+58 x^2+63 x+68$
- $y^2=12 x^6+78 x^5+24 x^4+14 x^3+12 x^2+67 x+71$
- $y^2=39 x^6+34 x^5+44 x^4+24 x^3+7 x^2+52 x+47$
- $y^2=9 x^6+50 x^5+25 x^4+81 x^3+66 x^2+2 x+26$
- $y^2=47 x^6+44 x^5+50 x^4+59 x^3+49 x^2+30 x+18$
- $y^2=16 x^6+65 x^5+34 x^4+74 x^3+18 x^2+16 x+49$
- $y^2=58 x^6+21 x^5+36 x^4+13 x^3+23 x^2+73 x+77$
- $y^2=77 x^6+61 x^5+64 x^4+12 x^3+53 x^2+10 x+16$
- $y^2=38 x^6+24 x^5+65 x^4+47 x^3+36 x^2+62 x+38$
- and 316 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.a $\times$ 1.83.j and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.dh $\times$ 1.6889.gk. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.aj_gk | $2$ | (not in LMFDB) |