Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + 28 x^{2} + 318 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.356901709470$, $\pm0.821382909191$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1250277696.1 |
Galois group: | $D_{4}$ |
Jacobians: | $120$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3162$ | $7949268$ | $22263746346$ | $62297364012624$ | $174857992159763082$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $2830$ | $149544$ | $7895254$ | $418125000$ | $22164382510$ | $1174709597100$ | $62259708081694$ | $3299763720195612$ | $174887469530917150$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=52 x^6+46 x^5+25 x^4+6 x^3+35 x^2+13 x+9$
- $y^2=17 x^6+20 x^5+50 x^4+9 x^3+14 x^2+42 x+10$
- $y^2=x^6+13 x^5+21 x^4+34 x^3+14 x^2+31 x+23$
- $y^2=40 x^6+39 x^5+44 x^4+31 x^3+17 x^2+15 x+43$
- $y^2=15 x^6+30 x^5+49 x^4+31 x^3+35 x^2+9 x+40$
- $y^2=31 x^6+47 x^5+44 x^4+17 x^3+34 x^2+33 x+39$
- $y^2=31 x^6+3 x^5+42 x^4+34 x^3+39 x^2+29 x+37$
- $y^2=45 x^6+9 x^5+51 x^4+24 x^3+5 x^2+50 x+4$
- $y^2=19 x^6+8 x^5+44 x^4+42 x^3+42 x^2+25 x+18$
- $y^2=28 x^6+43 x^5+5 x^4+3 x^3+32 x^2+13 x+18$
- $y^2=15 x^6+17 x^5+18 x^4+12 x^3+38 x^2+32 x+42$
- $y^2=9 x^6+49 x^4+20 x^3+26 x^2+34 x+17$
- $y^2=47 x^6+24 x^5+47 x^4+52 x^3+49 x^2+33 x+37$
- $y^2=46 x^6+50 x^5+49 x^4+45 x^3+13 x^2+9 x+39$
- $y^2=2 x^5+9 x^4+8 x^3+3 x^2+40 x+36$
- $y^2=43 x^6+23 x^4+26 x^3+39 x^2+35 x+28$
- $y^2=4 x^6+5 x^5+25 x^4+14 x^3+43 x^2+40 x+8$
- $y^2=6 x^6+38 x^5+37 x^4+34 x^3+29 x^2+19 x+24$
- $y^2=6 x^6+18 x^4+38 x^3+37 x^2+34 x+5$
- $y^2=30 x^6+28 x^5+31 x^4+51 x^3+14 x^2+51 x+12$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.1250277696.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ag_bc | $2$ | (not in LMFDB) |