Properties

Label 2.53.g_bc
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $1 + 6 x + 28 x^{2} + 318 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.356901709470$, $\pm0.821382909191$
Angle rank:  $2$ (numerical)
Number field:  4.0.1250277696.1
Galois group:  $D_{4}$
Jacobians:  $120$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3162$ $7949268$ $22263746346$ $62297364012624$ $174857992159763082$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $60$ $2830$ $149544$ $7895254$ $418125000$ $22164382510$ $1174709597100$ $62259708081694$ $3299763720195612$ $174887469530917150$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The endomorphism algebra of this simple isogeny class is 4.0.1250277696.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.ag_bc$2$(not in LMFDB)