Invariants
Base field: | $\F_{13}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 13 x^{2} )( 1 + 6 x + 13 x^{2} )$ |
$1 + 4 x + 14 x^{2} + 52 x^{3} + 169 x^{4}$ | |
Frobenius angles: | $\pm0.410543812489$, $\pm0.812832958189$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $24$ |
Isomorphism classes: | 180 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $240$ | $30720$ | $4944240$ | $818380800$ | $136971049200$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $18$ | $182$ | $2250$ | $28654$ | $368898$ | $4830374$ | $62754234$ | $815767006$ | $10604493810$ | $137857106582$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=4 x^6+6 x^5+2 x^4+4 x^3+4 x^2+11 x+9$
- $y^2=3 x^6+9 x^5+6 x^4+8 x^3+6 x^2+4 x$
- $y^2=10 x^6+5 x^5+12 x^4+10 x^3+10 x^2+8 x+9$
- $y^2=x^5+3 x^4+3 x^2+x$
- $y^2=3 x^6+x^5+7 x^4+9 x^3+7 x^2+x+3$
- $y^2=x^6+6 x^5+9 x^4+8 x^3+5 x^2+12 x+9$
- $y^2=x^6+12 x^5+3 x^4+6 x^3+x^2+10 x+1$
- $y^2=3 x^6+12 x^5+12 x^4+10 x^3+12 x^2+12 x+3$
- $y^2=5 x^6+8 x^5+4 x^4+9 x^3+x^2+4 x+1$
- $y^2=3 x^6+9 x^5+6 x^4+4 x^3+5 x^2+3 x+3$
- $y^2=10 x^5+3 x^4+4 x^3+12 x^2+7 x+12$
- $y^2=4 x^6+10 x^5+3 x^4+9 x^3+11 x^2+12 x+4$
- $y^2=x^6+6 x^5+x^4+8 x^3+7 x^2+x+12$
- $y^2=4 x^6+12 x^5+5 x^4+7 x^3+2 x^2+4 x+4$
- $y^2=7 x^6+2 x^5+9 x^4+11 x^3+4 x^2+x+4$
- $y^2=12 x^6+6 x^5+4 x^3+3 x^2+x$
- $y^2=10 x^6+2 x^5+7 x^4+2 x^3+3 x+4$
- $y^2=x^6+4 x^5+4 x^4+2 x^3+4 x^2+11 x$
- $y^2=10 x^6+5 x^5+3 x^4+5 x^3+7 x^2+11 x+10$
- $y^2=10 x^6+8 x^5+10 x^4+x^3+5 x^2+12 x+9$
- $y^2=5 x^6+7 x^4+7 x^3+7 x^2+5$
- $y^2=7 x^6+9 x^5+8 x^4+12 x^3+7 x^2+8$
- $y^2=2 x^5+9 x^4+x^3+12 x^2+5 x$
- $y^2=11 x^5+9 x^4+10 x^3+7 x^2+6$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$The isogeny class factors as 1.13.ac $\times$ 1.13.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.