Properties

Label 2.13.e_o
Base field $\F_{13}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $( 1 - 2 x + 13 x^{2} )( 1 + 6 x + 13 x^{2} )$
  $1 + 4 x + 14 x^{2} + 52 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.410543812489$, $\pm0.812832958189$
Angle rank:  $2$ (numerical)
Jacobians:  $24$
Isomorphism classes:  180

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $240$ $30720$ $4944240$ $818380800$ $136971049200$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $182$ $2250$ $28654$ $368898$ $4830374$ $62754234$ $815767006$ $10604493810$ $137857106582$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13}$.

Endomorphism algebra over $\F_{13}$
The isogeny class factors as 1.13.ac $\times$ 1.13.g and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.ai_bm$2$2.169.m_eo
2.13.ae_o$2$2.169.m_eo
2.13.i_bm$2$2.169.m_eo
2.13.b_ae$3$(not in LMFDB)
2.13.n_cq$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.ai_bm$2$2.169.m_eo
2.13.ae_o$2$2.169.m_eo
2.13.i_bm$2$2.169.m_eo
2.13.b_ae$3$(not in LMFDB)
2.13.n_cq$3$(not in LMFDB)
2.13.ag_bi$4$(not in LMFDB)
2.13.ac_s$4$(not in LMFDB)
2.13.c_s$4$(not in LMFDB)
2.13.g_bi$4$(not in LMFDB)
2.13.an_cq$6$(not in LMFDB)
2.13.al_ce$6$(not in LMFDB)
2.13.ab_aq$6$(not in LMFDB)
2.13.ab_ae$6$(not in LMFDB)
2.13.b_aq$6$(not in LMFDB)
2.13.l_ce$6$(not in LMFDB)
2.13.al_cc$12$(not in LMFDB)
2.13.aj_bu$12$(not in LMFDB)
2.13.ad_ac$12$(not in LMFDB)
2.13.ab_g$12$(not in LMFDB)
2.13.b_g$12$(not in LMFDB)
2.13.d_ac$12$(not in LMFDB)
2.13.j_bu$12$(not in LMFDB)
2.13.l_cc$12$(not in LMFDB)