Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 44 x^{2} + 244 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.350826749795$, $\pm0.750289010602$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.31414528.1 |
Galois group: | $D_{4}$ |
Jacobians: | $136$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4014$ | $14121252$ | $51581027934$ | $191841218855568$ | $713272884523834734$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $66$ | $3794$ | $227250$ | $13855510$ | $844513386$ | $51519947330$ | $3142744836234$ | $191707308042718$ | $11694146437369314$ | $713342911603677074$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 136 curves (of which all are hyperelliptic):
- $y^2=33 x^6+31 x^5+40 x^4+49 x^3+38 x^2+57 x+60$
- $y^2=40 x^6+32 x^5+2 x^4+13 x^3+54 x^2+30 x+26$
- $y^2=10 x^6+53 x^5+39 x^4+49 x^3+34 x^2+33 x+53$
- $y^2=27 x^6+2 x^5+47 x^4+5 x^3+39 x+7$
- $y^2=13 x^6+48 x^5+7 x^4+10 x^3+7 x^2+18 x+9$
- $y^2=13 x^6+37 x^5+54 x^4+22 x^3+18 x^2+37 x+50$
- $y^2=12 x^6+34 x^5+20 x^4+3 x^3+34 x^2+7 x+59$
- $y^2=59 x^6+23 x^5+47 x^4+21 x^3+12 x^2+21 x+13$
- $y^2=33 x^6+33 x^5+35 x^4+40 x^3+58 x^2+45 x+18$
- $y^2=8 x^6+51 x^5+57 x^4+20 x^3+13 x^2+47 x+37$
- $y^2=55 x^6+36 x^5+30 x^4+28 x^3+24 x^2+12 x+60$
- $y^2=58 x^6+38 x^5+58 x^4+41 x^3+41 x^2+8 x+12$
- $y^2=22 x^6+8 x^5+7 x^4+4 x^3+45 x^2+22 x+29$
- $y^2=58 x^6+52 x^5+34 x^4+26 x^3+37 x^2+4 x+13$
- $y^2=58 x^6+57 x^5+18 x^4+42 x^3+31 x^2+16 x+56$
- $y^2=12 x^6+48 x^5+58 x^4+16 x^3+19 x^2+46 x+20$
- $y^2=13 x^6+32 x^5+15 x^4+22 x^3+47 x^2+28 x+15$
- $y^2=46 x^6+26 x^5+11 x^4+37 x^3+7 x^2+26 x+48$
- $y^2=30 x^6+15 x^5+54 x^4+52 x^3+6 x+37$
- $y^2=42 x^6+48 x^5+6 x^4+39 x^3+11 x^2+59 x+9$
- and 116 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.31414528.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.ae_bs | $2$ | (not in LMFDB) |