Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 6 x + x^{2} + 426 x^{3} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.315109552610$, $\pm0.859957072545$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.5889600.9 |
Galois group: | $D_{4}$ |
Jacobians: | $144$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5475$ | $25245225$ | $128629628100$ | $645976862163225$ | $3255117342556546875$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $78$ | $5008$ | $359388$ | $25420468$ | $1804159398$ | $128100237478$ | $9095109323658$ | $645753581810788$ | $45848500798316868$ | $3255243555329830048$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=x^6+16 x^5+31 x^4+15 x^3+51 x^2+52 x+21$
- $y^2=45 x^6+33 x^5+62 x^4+43 x^3+18 x^2+41 x+59$
- $y^2=51 x^6+69 x^5+29 x^4+44 x^3+53 x^2+60 x+15$
- $y^2=34 x^6+53 x^5+5 x^4+57 x^3+50 x^2+22 x+1$
- $y^2=24 x^6+28 x^5+45 x^4+2 x^3+47 x^2+44 x+31$
- $y^2=30 x^6+x^5+6 x^4+27 x^3+59 x^2+47 x+2$
- $y^2=52 x^6+44 x^5+32 x^4+44 x^3+17 x^2+37 x+67$
- $y^2=53 x^6+32 x^5+62 x^4+59 x^3+26 x^2+65 x+29$
- $y^2=59 x^6+44 x^5+37 x^4+63 x^3+9 x^2+60 x+64$
- $y^2=31 x^6+58 x^5+67 x^4+11 x^3+49 x^2+12 x+17$
- $y^2=51 x^6+55 x^5+5 x^4+x^3+67 x^2+52 x+39$
- $y^2=4 x^6+50 x^5+44 x^4+3 x^3+66 x^2+32 x+69$
- $y^2=22 x^6+58 x^5+62 x^4+18 x^3+17 x^2+59 x+57$
- $y^2=9 x^6+59 x^5+44 x^4+66 x^3+38 x^2+57 x+40$
- $y^2=70 x^6+50 x^5+27 x^4+45 x^3+17 x^2+70 x+55$
- $y^2=28 x^6+60 x^5+23 x^4+70 x^3+33 x^2+31 x+38$
- $y^2=50 x^6+9 x^5+24 x^3+21 x^2+58 x+26$
- $y^2=57 x^6+53 x^5+46 x^4+53 x^3+30 x^2+45 x+64$
- $y^2=70 x^6+9 x^5+63 x^4+69 x^3+50 x^2+31 x+52$
- $y^2=18 x^6+50 x^5+46 x^4+12 x^3+55 x^2+5 x+47$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is 4.0.5889600.9. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.ag_b | $2$ | (not in LMFDB) |