Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 3 x + 76 x^{2} + 123 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.465825196969$, $\pm0.610907101910$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1598652.2 |
Galois group: | $D_{4}$ |
Jacobians: | $70$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1884$ | $3074688$ | $4730317056$ | $7974621485568$ | $13423841389166844$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $45$ | $1825$ | $68634$ | $2822113$ | $115866405$ | $4750145998$ | $194754306141$ | $7984926837889$ | $327381904828746$ | $13422659202422065$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 70 curves (of which all are hyperelliptic):
- $y^2=39 x^6+31 x^5+31 x^4+8 x^3+26 x^2+4 x+13$
- $y^2=34 x^5+28 x^4+7 x^3+32 x^2+38 x+35$
- $y^2=3 x^6+29 x^5+8 x^4+8 x^3+6 x^2+36 x+11$
- $y^2=12 x^5+37 x^4+31 x^3+4 x^2+14 x+16$
- $y^2=21 x^6+9 x^4+27 x^3+12 x^2+9 x+26$
- $y^2=31 x^6+5 x^5+2 x^4+23 x^2+4 x+26$
- $y^2=6 x^6+9 x^5+6 x^4+20 x^3+8 x^2+32 x+22$
- $y^2=29 x^6+11 x^5+24 x^4+3 x^3+33 x^2+6 x+4$
- $y^2=27 x^6+35 x^5+28 x^4+15 x^3+3 x^2+12 x+19$
- $y^2=27 x^6+34 x^5+2 x^4+3 x^3+3 x^2+33 x+34$
- $y^2=28 x^6+26 x^5+23 x^4+40 x^3+19 x^2+26 x$
- $y^2=32 x^6+x^5+19 x^4+26 x^3+17 x^2+33 x+15$
- $y^2=21 x^6+12 x^5+3 x^4+20 x^3+27 x^2+29 x+2$
- $y^2=22 x^6+2 x^5+25 x^4+5 x^3+28 x^2+3 x+35$
- $y^2=22 x^6+37 x^5+31 x^4+38 x^3+39 x^2+33 x+8$
- $y^2=25 x^6+21 x^5+39 x^4+38 x^3+36 x^2+6 x+19$
- $y^2=39 x^6+25 x^5+28 x^4+34 x^3+9 x^2+10 x+24$
- $y^2=17 x^6+15 x^5+2 x^4+26 x^3+8 x^2+19 x+17$
- $y^2=40 x^6+23 x^5+13 x^4+5 x^3+34 x^2+14 x+25$
- $y^2=33 x^6+16 x^5+23 x^4+37 x^3+22 x^2+9 x+31$
- and 50 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.1598652.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.ad_cy | $2$ | (not in LMFDB) |