Properties

Label 4-6e6-1.1-c1e2-0-10
Degree $4$
Conductor $46656$
Sign $1$
Analytic cond. $2.97482$
Root an. cond. $1.31330$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·7-s + 8·13-s + 4·19-s − 9·25-s − 14·31-s − 12·37-s − 4·43-s + 13·49-s − 16·61-s − 20·67-s + 2·73-s + 32·79-s + 48·91-s − 2·97-s + 8·103-s + 20·109-s + 3·121-s + 127-s + 131-s + 24·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + ⋯
L(s)  = 1  + 2.26·7-s + 2.21·13-s + 0.917·19-s − 9/5·25-s − 2.51·31-s − 1.97·37-s − 0.609·43-s + 13/7·49-s − 2.04·61-s − 2.44·67-s + 0.234·73-s + 3.60·79-s + 5.03·91-s − 0.203·97-s + 0.788·103-s + 1.91·109-s + 3/11·121-s + 0.0887·127-s + 0.0873·131-s + 2.08·133-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 46656 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(46656\)    =    \(2^{6} \cdot 3^{6}\)
Sign: $1$
Analytic conductor: \(2.97482\)
Root analytic conductor: \(1.31330\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 46656,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.820048987\)
\(L(\frac12)\) \(\approx\) \(1.820048987\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5$C_2$ \( ( 1 - T + p T^{2} )( 1 + T + p T^{2} ) \)
7$C_2$ \( ( 1 - 3 T + p T^{2} )^{2} \)
11$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
13$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
17$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
19$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
23$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \)
29$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
41$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
43$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
47$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
53$C_2$ \( ( 1 - 5 T + p T^{2} )( 1 + 5 T + p T^{2} ) \)
59$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + 4 T + p T^{2} ) \)
61$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )( 1 + 8 T + p T^{2} ) \)
73$C_2$ \( ( 1 - T + p T^{2} )^{2} \)
79$C_2$ \( ( 1 - 16 T + p T^{2} )^{2} \)
83$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 + 11 T + p T^{2} ) \)
89$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \)
97$C_2$ \( ( 1 + T + p T^{2} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.49034723509072962140764470290, −9.460094847454279126868063019693, −9.046545135813963295999252728111, −8.554704477910262490194224105907, −8.092105179993141599508863549634, −7.62368049380914397426496743518, −7.25448367711369655898353657421, −6.23138020629374792100300833919, −5.79729187121046804129336776899, −5.18432945826177342955590271236, −4.71525232702415007486392238194, −3.74514947909231141400939990651, −3.48503979598989868638885321849, −1.73582051333148490489274132763, −1.64081961055094255152301138209, 1.64081961055094255152301138209, 1.73582051333148490489274132763, 3.48503979598989868638885321849, 3.74514947909231141400939990651, 4.71525232702415007486392238194, 5.18432945826177342955590271236, 5.79729187121046804129336776899, 6.23138020629374792100300833919, 7.25448367711369655898353657421, 7.62368049380914397426496743518, 8.092105179993141599508863549634, 8.554704477910262490194224105907, 9.046545135813963295999252728111, 9.460094847454279126868063019693, 10.49034723509072962140764470290

Graph of the $Z$-function along the critical line