Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 5 x + 53 x^{2} )( 1 + 5 x + 53 x^{2} )$ |
$1 + 81 x^{2} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.388420875603$, $\pm0.611579124397$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $52$ |
Isomorphism classes: | 208 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2891$ | $8357881$ | $22164209984$ | $62244825632521$ | $174887469583853411$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2972$ | $148878$ | $7888596$ | $418195494$ | $22164058838$ | $1174711139838$ | $62259720194788$ | $3299763591802134$ | $174887468802193772$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=24 x^6+8 x^5+49 x^4+17 x^3+26 x^2+9 x+18$
- $y^2=48 x^6+16 x^5+45 x^4+34 x^3+52 x^2+18 x+36$
- $y^2=47 x^6+14 x^5+27 x^4+8 x^3+34 x^2+5 x+45$
- $y^2=41 x^6+28 x^5+x^4+16 x^3+15 x^2+10 x+37$
- $y^2=9 x^6+23 x^5+20 x^4+14 x^3+38 x^2+26 x+39$
- $y^2=18 x^6+46 x^5+40 x^4+28 x^3+23 x^2+52 x+25$
- $y^2=35 x^6+9 x^5+5 x^4+44 x^3+5 x^2+9 x+35$
- $y^2=17 x^6+18 x^5+10 x^4+35 x^3+10 x^2+18 x+17$
- $y^2=31 x^6+52 x^5+4 x^4+50 x^3+34 x^2+7 x+17$
- $y^2=38 x^6+9 x^5+38 x^4+5 x^3+32 x^2+20 x+3$
- $y^2=4 x^6+37 x^5+31 x^4+10 x^3+17 x^2+6 x+6$
- $y^2=8 x^6+21 x^5+9 x^4+20 x^3+34 x^2+12 x+12$
- $y^2=3 x^6+49 x^5+20 x^4+51 x^3+40 x^2+42 x+28$
- $y^2=6 x^6+45 x^5+40 x^4+49 x^3+27 x^2+31 x+3$
- $y^2=34 x^6+9 x^5+22 x^4+25 x^3+43 x^2+7 x+42$
- $y^2=15 x^6+18 x^5+44 x^4+50 x^3+33 x^2+14 x+31$
- $y^2=12 x^6+44 x^5+17 x^4+52 x^3+34 x^2+23 x+44$
- $y^2=24 x^6+35 x^5+34 x^4+51 x^3+15 x^2+46 x+35$
- $y^2=51 x^6+4 x^5+14 x^4+15 x^3+28 x^2+15 x+16$
- $y^2=32 x^6+3 x^5+44 x^4+5 x^3+16 x^2+42 x+25$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.af $\times$ 1.53.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.dd 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-187}) \)$)$ |
Base change
This is a primitive isogeny class.