Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 11 x + 83 x^{2} )( 1 + 11 x + 83 x^{2} )$ |
$1 + 45 x^{2} + 6889 x^{4}$ | |
Frobenius angles: | $\pm0.293691115068$, $\pm0.706308884932$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $189$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6935$ | $48094225$ | $326939534480$ | $2253408020505625$ | $15516041194929703175$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $84$ | $6980$ | $571788$ | $47481828$ | $3939040644$ | $326938695590$ | $27136050989628$ | $2252292145706308$ | $186940255267540404$ | $15516041202653552900$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 189 curves (of which all are hyperelliptic):
- $y^2=56 x^6+74 x^5+39 x^4+34 x^3+61 x^2+60 x+7$
- $y^2=19 x^6+67 x^5+81 x^4+29 x^3+37 x^2+25 x+5$
- $y^2=38 x^6+51 x^5+79 x^4+58 x^3+74 x^2+50 x+10$
- $y^2=22 x^6+59 x^5+12 x^4+47 x^3+23 x^2+21 x+10$
- $y^2=44 x^6+35 x^5+24 x^4+11 x^3+46 x^2+42 x+20$
- $y^2=49 x^6+67 x^5+65 x^4+48 x^3+34 x^2+44 x+59$
- $y^2=15 x^6+51 x^5+47 x^4+13 x^3+68 x^2+5 x+35$
- $y^2=14 x^6+34 x^5+53 x^4+37 x^3+49 x^2+54 x+75$
- $y^2=80 x^6+71 x^5+76 x^4+81 x^3+6 x^2+42 x+74$
- $y^2=77 x^6+59 x^5+69 x^4+79 x^3+12 x^2+x+65$
- $y^2=75 x^6+25 x^5+68 x^4+80 x^3+9 x^2+19 x+23$
- $y^2=67 x^6+50 x^5+53 x^4+77 x^3+18 x^2+38 x+46$
- $y^2=76 x^6+74 x^5+39 x^4+67 x^3+43 x^2+57 x+56$
- $y^2=69 x^6+65 x^5+78 x^4+51 x^3+3 x^2+31 x+29$
- $y^2=75 x^6+3 x^5+62 x^4+60 x^3+x^2+24 x+29$
- $y^2=67 x^6+6 x^5+41 x^4+37 x^3+2 x^2+48 x+58$
- $y^2=32 x^6+20 x^5+27 x^4+32 x^3+48 x^2+41 x+55$
- $y^2=64 x^6+40 x^5+54 x^4+64 x^3+13 x^2+82 x+27$
- $y^2=41 x^6+81 x^5+10 x^4+31 x^3+34 x^2+30 x+67$
- $y^2=57 x^6+65 x^5+40 x^4+19 x^3+71 x^2+11 x+65$
- and 169 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83^{2}}$.
Endomorphism algebra over $\F_{83}$The isogeny class factors as 1.83.al $\times$ 1.83.l and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{83^{2}}$ is 1.6889.bt 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-211}) \)$)$ |
Base change
This is a primitive isogeny class.