L(s) = 1 | + 2·3-s − 2·5-s + 2·7-s + 6·11-s + 8·13-s − 4·15-s − 2·17-s + 4·19-s + 4·21-s + 6·23-s + 3·25-s − 2·27-s − 10·31-s + 12·33-s − 4·35-s + 8·37-s + 16·39-s − 8·43-s − 12·47-s − 8·49-s − 4·51-s − 12·53-s − 12·55-s + 8·57-s + 12·59-s − 4·61-s − 16·65-s + ⋯ |
L(s) = 1 | + 1.15·3-s − 0.894·5-s + 0.755·7-s + 1.80·11-s + 2.21·13-s − 1.03·15-s − 0.485·17-s + 0.917·19-s + 0.872·21-s + 1.25·23-s + 3/5·25-s − 0.384·27-s − 1.79·31-s + 2.08·33-s − 0.676·35-s + 1.31·37-s + 2.56·39-s − 1.21·43-s − 1.75·47-s − 8/7·49-s − 0.560·51-s − 1.64·53-s − 1.61·55-s + 1.05·57-s + 1.56·59-s − 0.512·61-s − 1.98·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 29593600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(5.501645427\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.501645427\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.418932434875304339383533902028, −8.091947923321874936944318706906, −7.62172547158191915565848376455, −7.53022300481004052980919832815, −6.93158190902663312297991196788, −6.60356084493760610975077921788, −6.24604990357539231366525336009, −6.01414007510040607797489850788, −5.41272267118561332463103544981, −4.95586032889971216760528060251, −4.49878910362399220280749078835, −4.31502102771274178378664580755, −3.57864563069013220333310165727, −3.57029175687943243123822306482, −3.07413615138365855489493762842, −3.01155377904767149931182389625, −1.79108898698802581369322659185, −1.75625622697916060009938648346, −1.24126190983024370856865880454, −0.60564231137073375066833627473,
0.60564231137073375066833627473, 1.24126190983024370856865880454, 1.75625622697916060009938648346, 1.79108898698802581369322659185, 3.01155377904767149931182389625, 3.07413615138365855489493762842, 3.57029175687943243123822306482, 3.57864563069013220333310165727, 4.31502102771274178378664580755, 4.49878910362399220280749078835, 4.95586032889971216760528060251, 5.41272267118561332463103544981, 6.01414007510040607797489850788, 6.24604990357539231366525336009, 6.60356084493760610975077921788, 6.93158190902663312297991196788, 7.53022300481004052980919832815, 7.62172547158191915565848376455, 8.091947923321874936944318706906, 8.418932434875304339383533902028