Properties

Label 2.89.m_ec
Base field $\F_{89}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{89}$
Dimension:  $2$
L-polynomial:  $1 + 12 x + 106 x^{2} + 1068 x^{3} + 7921 x^{4}$
Frobenius angles:  $\pm0.425213965575$, $\pm0.835102117892$
Angle rank:  $2$ (numerical)
Number field:  4.0.1058112.2
Galois group:  $D_{4}$
Jacobians:  $560$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9108$ $63282384$ $497769477876$ $3936480190460928$ $31180239133130063988$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $102$ $7990$ $706086$ $62740510$ $5583794262$ $496982926294$ $44231336391414$ $3936588911346238$ $350356402635211206$ $31181719917084122230$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 560 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{89}$.

Endomorphism algebra over $\F_{89}$
The endomorphism algebra of this simple isogeny class is 4.0.1058112.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.89.am_ec$2$(not in LMFDB)