Invariants
| Base field: | $\F_{29}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 46 x^{2} + 841 x^{4}$ |
| Frobenius angles: | $\pm0.395768018883$, $\pm0.604231981117$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{3}, \sqrt{-26})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $78$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $888$ | $788544$ | $594804600$ | $499634095104$ | $420707192639928$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $30$ | $934$ | $24390$ | $706414$ | $20511150$ | $594785878$ | $17249876310$ | $500248865374$ | $14507145975870$ | $420707151979654$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=10 x^6+12 x^5+27 x^4+18 x^3+20 x^2+3 x+1$
- $y^2=20 x^6+24 x^5+25 x^4+7 x^3+11 x^2+6 x+2$
- $y^2=7 x^6+5 x^5+11 x^4+2 x^3+8 x^2+26 x+12$
- $y^2=14 x^6+10 x^5+22 x^4+4 x^3+16 x^2+23 x+24$
- $y^2=4 x^6+4 x^5+10 x^4+26 x^3+2 x^2+25 x+21$
- $y^2=8 x^6+8 x^5+20 x^4+23 x^3+4 x^2+21 x+13$
- $y^2=25 x^6+15 x^5+3 x^4+26 x^3+28 x^2+5 x+28$
- $y^2=6 x^6+15 x^5+9 x^4+17 x^3+24 x^2+26 x+4$
- $y^2=12 x^6+x^5+18 x^4+5 x^3+19 x^2+23 x+8$
- $y^2=19 x^6+11 x^5+8 x^4+5 x^3+25 x^2+5 x+27$
- $y^2=9 x^6+22 x^5+16 x^4+10 x^3+21 x^2+10 x+25$
- $y^2=25 x^6+22 x^5+14 x^4+10 x^3+28 x^2+14 x+7$
- $y^2=21 x^6+15 x^5+28 x^4+20 x^3+27 x^2+28 x+14$
- $y^2=6 x^6+27 x^5+4 x^4+28 x^3+5 x^2+14 x+18$
- $y^2=12 x^6+25 x^5+8 x^4+27 x^3+10 x^2+28 x+7$
- $y^2=x^5+20 x^4+4 x^3+15 x^2+21 x+11$
- $y^2=2 x^5+11 x^4+8 x^3+x^2+13 x+22$
- $y^2=20 x^6+23 x^5+15 x^4+11 x^3+17 x^2+11 x+24$
- $y^2=11 x^6+17 x^5+x^4+22 x^3+5 x^2+22 x+19$
- $y^2=20 x^6+5 x^5+10 x^4+27 x^3+24 x^2+27 x+24$
- and 58 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29^{2}}$.
Endomorphism algebra over $\F_{29}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-26})\). |
| The base change of $A$ to $\F_{29^{2}}$ is 1.841.bu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-78}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.29.a_abu | $4$ | (not in LMFDB) |
| 2.29.ag_bp | $12$ | (not in LMFDB) |
| 2.29.g_bp | $12$ | (not in LMFDB) |