Properties

Label 2.3.ac_e
Base Field $\F_{3}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $2$
L-polynomial:  $1 - 2 x + 4 x^{2} - 6 x^{3} + 9 x^{4}$
Frobenius angles:  $\pm0.210767374595$, $\pm0.567777800232$
Angle rank:  $2$ (numerical)
Number field:  4.0.7488.1
Galois group:  $D_{4}$
Jacobians:  2

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 2 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 132 702 6864 74526 571428 4598502 42611712 387350262 3444740772

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 2 14 26 86 302 782 2102 6494 19682 58334

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 4.0.7488.1.
All geometric endomorphisms are defined over $\F_{3}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.3.c_e$2$2.9.e_k