Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 70 x^{2} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.412810694922$, $\pm0.587189305078$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{3}, \sqrt{-38})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $156$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1752$ | $3069504$ | $4750094232$ | $7976241202176$ | $13422659096953752$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $42$ | $1822$ | $68922$ | $2822686$ | $115856202$ | $4750084222$ | $194754273882$ | $7984931801278$ | $327381934393962$ | $13422658883755102$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 156 curves (of which all are hyperelliptic):
- $y^2=34 x^6+34 x^5+26 x^4+24 x^3+19 x^2+27 x+27$
- $y^2=40 x^6+40 x^5+33 x^4+21 x^3+32 x^2+39 x+39$
- $y^2=17 x^6+27 x^5+15 x^4+26 x^3+6 x^2+22 x+18$
- $y^2=20 x^6+39 x^5+8 x^4+33 x^3+36 x^2+9 x+26$
- $y^2=35 x^6+14 x^5+32 x^4+3 x^3+36 x^2+39 x+35$
- $y^2=5 x^6+2 x^5+28 x^4+18 x^3+11 x^2+29 x+5$
- $y^2=18 x^6+14 x^5+7 x^4+7 x^3+14 x^2+32 x+21$
- $y^2=26 x^6+2 x^5+x^4+x^3+2 x^2+28 x+3$
- $y^2=x^6+x^3+30$
- $y^2=32 x^6+11 x^5+18 x^4+24 x^3+15 x^2+29 x+16$
- $y^2=19 x^6+25 x^5+11 x^4+8 x^3+16 x^2+16 x+40$
- $y^2=32 x^6+27 x^5+25 x^4+7 x^3+14 x^2+14 x+35$
- $y^2=x^6+x^3+15$
- $y^2=11 x^6+24 x^5+30 x^4+24 x^3+35 x^2+11 x+28$
- $y^2=25 x^6+21 x^5+16 x^4+21 x^3+5 x^2+25 x+4$
- $y^2=27 x^6+31 x^5+15 x^4+25 x^3+15 x^2+7 x+4$
- $y^2=39 x^6+22 x^5+8 x^4+27 x^3+8 x^2+x+24$
- $y^2=23 x^6+39 x^5+22 x^4+35 x^3+30 x^2+10 x+34$
- $y^2=15 x^6+29 x^5+9 x^4+5 x^3+16 x^2+19 x+40$
- $y^2=12 x^6+17 x^5+3 x^4+24 x^3+31 x^2+34 x+2$
- and 136 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{2}}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{3}, \sqrt{-38})\). |
| The base change of $A$ to $\F_{41^{2}}$ is 1.1681.cs 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-114}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.a_acs | $4$ | (not in LMFDB) |
| 2.41.ag_cb | $12$ | (not in LMFDB) |
| 2.41.g_cb | $12$ | (not in LMFDB) |