Properties

Label 2.83.ay_lm
Base field $\F_{83}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{83}$
Dimension:  $2$
L-polynomial:  $1 - 24 x + 298 x^{2} - 1992 x^{3} + 6889 x^{4}$
Frobenius angles:  $\pm0.177384101994$, $\pm0.344806025318$
Angle rank:  $2$ (numerical)
Number field:  4.0.216576.1
Galois group:  $D_{4}$
Jacobians:  $180$
Isomorphism classes:  228

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5172$ $47603088$ $327888627156$ $2252934576082944$ $15516184787190054132$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $60$ $6910$ $573444$ $47471854$ $3939077100$ $326940376750$ $27136055754420$ $2252292324885214$ $186940255829128092$ $15516041182513779550$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{83}$.

Endomorphism algebra over $\F_{83}$
The endomorphism algebra of this simple isogeny class is 4.0.216576.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.83.y_lm$2$(not in LMFDB)