Invariants
Base field: | $\F_{83}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 24 x + 298 x^{2} - 1992 x^{3} + 6889 x^{4}$ |
Frobenius angles: | $\pm0.177384101994$, $\pm0.344806025318$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.216576.1 |
Galois group: | $D_{4}$ |
Jacobians: | $180$ |
Isomorphism classes: | 228 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5172$ | $47603088$ | $327888627156$ | $2252934576082944$ | $15516184787190054132$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $60$ | $6910$ | $573444$ | $47471854$ | $3939077100$ | $326940376750$ | $27136055754420$ | $2252292324885214$ | $186940255829128092$ | $15516041182513779550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 180 curves (of which all are hyperelliptic):
- $y^2=5 x^6+77 x^5+58 x^4+48 x^3+12 x^2+63 x+66$
- $y^2=51 x^6+22 x^5+74 x^4+81 x^3+53 x^2+32 x+58$
- $y^2=27 x^6+22 x^5+47 x^4+80 x^3+12 x^2+6 x+18$
- $y^2=15 x^5+50 x^4+14 x^3+72 x^2+18 x+81$
- $y^2=74 x^6+43 x^5+11 x^4+78 x^3+28 x^2+34 x+32$
- $y^2=24 x^6+40 x^5+22 x^4+65 x^3+51 x^2+31 x+21$
- $y^2=59 x^6+12 x^5+2 x^4+24 x^3+17 x^2+17 x+72$
- $y^2=22 x^6+38 x^5+55 x^4+5 x^3+60 x^2+43 x+1$
- $y^2=53 x^6+36 x^5+66 x^4+74 x^3+70 x^2+77 x+16$
- $y^2=6 x^6+57 x^5+19 x^4+63 x^3+5 x^2+53 x+16$
- $y^2=46 x^6+2 x^5+81 x^4+24 x^3+4 x^2+70 x+56$
- $y^2=11 x^6+62 x^5+69 x^4+21 x^3+18 x^2+16 x+53$
- $y^2=39 x^6+3 x^5+49 x^4+20 x^3+79 x^2+41 x+43$
- $y^2=62 x^6+74 x^5+67 x^4+70 x^3+9 x^2+26 x+29$
- $y^2=67 x^6+35 x^5+47 x^4+8 x^3+51 x^2+12 x+76$
- $y^2=45 x^6+57 x^5+51 x^4+66 x^3+64 x^2+20 x+23$
- $y^2=8 x^6+32 x^5+37 x^4+17 x^3+63 x^2+35 x+58$
- $y^2=6 x^6+19 x^5+62 x^4+x^3+14 x^2+56 x+49$
- $y^2=12 x^6+65 x^5+72 x^4+20 x^3+27 x^2+78 x+49$
- $y^2=36 x^6+74 x^5+6 x^4+x^3+25 x^2+54 x+39$
- and 160 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$The endomorphism algebra of this simple isogeny class is 4.0.216576.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.83.y_lm | $2$ | (not in LMFDB) |