Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 8 x + 54 x^{2} + 584 x^{3} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.377958078881$, $\pm0.818766946054$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.85248.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $378$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5976$ | $28636992$ | $151711379352$ | $806645416080384$ | $4297267631126554776$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $82$ | $5374$ | $389986$ | $28404766$ | $2072898802$ | $151334456542$ | $11047397039362$ | $806460157442494$ | $58871587050127762$ | $4297625823066217534$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 378 curves (of which all are hyperelliptic):
- $y^2=38 x^6+9 x^5+48 x^4+20 x^3+35 x+66$
- $y^2=12 x^6+19 x^5+19 x^4+4 x^3+32 x^2+58 x+44$
- $y^2=29 x^5+43 x^4+60 x^3+33 x^2+8 x+24$
- $y^2=54 x^6+13 x^5+19 x^4+66 x^3+11 x^2+50 x+55$
- $y^2=25 x^6+55 x^5+21 x^4+68 x^3+43 x^2+29 x+1$
- $y^2=49 x^6+44 x^5+71 x^4+59 x^3+10 x^2+47 x+48$
- $y^2=58 x^6+58 x^5+6 x^4+49 x^3+69 x^2+62 x+47$
- $y^2=42 x^6+40 x^5+20 x^4+72 x^2+37 x+18$
- $y^2=71 x^6+68 x^5+62 x^4+31 x^3+7 x^2+14 x+62$
- $y^2=52 x^6+41 x^5+54 x^4+41 x^3+51 x^2+9 x+21$
- $y^2=24 x^6+64 x^5+68 x^4+29 x^3+43 x^2+7 x+47$
- $y^2=16 x^6+9 x^5+43 x^4+56 x^3+21 x^2+27 x+65$
- $y^2=68 x^6+62 x^5+4 x^4+x^3+25 x^2+8 x+70$
- $y^2=38 x^6+32 x^5+34 x^4+71 x^3+8 x^2+61 x+57$
- $y^2=22 x^6+33 x^4+11 x^3+13 x^2+12 x+60$
- $y^2=32 x^6+44 x^5+34 x^4+8 x^3+34 x^2+9 x+23$
- $y^2=3 x^6+63 x^5+63 x^4+32 x^3+23 x^2+60 x+35$
- $y^2=55 x^6+41 x^5+15 x^4+22 x^3+38 x^2+42 x+33$
- $y^2=66 x^6+61 x^5+65 x^4+16 x^3+54 x^2+67 x+29$
- $y^2=50 x^6+65 x^5+71 x^4+34 x^3+34 x^2+5 x+34$
- and 358 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is 4.0.85248.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.ai_cc | $2$ | (not in LMFDB) |