Properties

Label 2.73.i_cc
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $1 + 8 x + 54 x^{2} + 584 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.377958078881$, $\pm0.818766946054$
Angle rank:  $2$ (numerical)
Number field:  4.0.85248.1
Galois group:  $D_{4}$
Jacobians:  $378$
Cyclic group of points:    no
Non-cyclic primes:   $2, 3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5976$ $28636992$ $151711379352$ $806645416080384$ $4297267631126554776$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $82$ $5374$ $389986$ $28404766$ $2072898802$ $151334456542$ $11047397039362$ $806460157442494$ $58871587050127762$ $4297625823066217534$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 378 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The endomorphism algebra of this simple isogeny class is 4.0.85248.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.ai_cc$2$(not in LMFDB)